A key goal of the fair-ML community is to develop machine-learning based systems that, once introduced into a social context, can achieve social and legal outcomes such as fairness, justice, and due process. Bedrock concepts in computer science---such as abstraction and modular design---are used to define notions of fairness and discrimination, to produce fairness-aware learning algorithms, and to intervene at different stages of a decision-making pipeline to produce "fair" outcomes. In this paper, however, we contend that these concepts render technical interventions ineffective, inaccurate, and sometimes dangerously misguided when they enter the societal context that surrounds decision-making systems. We outline this mismatch with five "traps" that fair-ML work can fall into even as it attempts to be more context-aware in comparison to traditional data science. We draw on studies of sociotechnical systems in Science and Technology Studies to explain why such traps occur and how to avoid them. Finally, we suggest ways in which technical designers can mitigate the traps through a refocusing of design in terms of process rather than solutions, and by drawing abstraction boundaries to include social actors rather than purely technical ones. 
                        more » 
                        « less   
                    
                            
                            A review of predictive policing from the perspective of fairness
                        
                    
    
            Machine Learning has become a popular tool in a variety of applications in criminal justice, including sentencing and policing. Media has brought attention to the possibility of predictive policing systems causing disparate impacts and exacerbating social injustices. However, there is little academic research on the importance of fairness in machine learning applications in policing. Although prior research has shown that machine learning models can handle some tasks efficiently, they are susceptible to replicating systemic bias of previous human decision-makers. While there is much research on fair machine learning in general, there is a need to investigate fair machine learning techniques as they pertain to the predictive policing. Therefore, we evaluate the existing publications in the field of fairness in machine learning and predictive policing to arrive at a set of standards for fair predictive policing. We also review the evaluations of ML applications in the area of criminal justice and potential techniques to improve these technologies going forward. We urge that the growing literature on fairness in ML be brought into conversation with the legal and social science concerns being raised about predictive policing. Lastly, in any area, including predictive policing, the pros and cons of the technology need to be evaluated holistically to determine whether and how the technology should be used in policing. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1917712
- PAR ID:
- 10276841
- Date Published:
- Journal Name:
- Artificial Intelligence and Law
- ISSN:
- 0924-8463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract—We present the Seldonian Toolkit, which enables software engineers to integrate provably safe and fair machine learning algorithms into their systems. Software systems that use data and machine learning are routinely deployed in a wide range of settings from medical applications, autonomous vehicles, the criminal justice system, and hiring processes. These systems, however, can produce unsafe and unfair behavior, such as suggesting potentially fatal medical treatments, making racist or sexist predictions, or facilitating radicalization and polarization. To reduce these undesirable behaviors, software engineers need the ability to easily integrate their machine- learning-based systems with domain-specific safety and fairness requirements defined by domain experts, such as doctors and hiring managers. The Seldonian Toolkit provides special machine learning algorithms that enable software engineers to incorporate such expert-defined requirements of safety and fairness into their systems, while provably guaranteeing those requirements will be satisfied. A video demonstrating the Seldonian Toolkit is available at https://youtu.be/wHR-hDm9jX4/.more » « less
- 
            Fairness is becoming a rising concern in machine learning. Recent research has discovered that state-of-the-art models are amplifying social bias by making biased prediction towards some population groups (characterized by sensitive features like race or gender). Such unfair prediction among groups renders trust issues and ethical concerns in machine learning, especially for sensitive fields such as employment, criminal justice, and trust score assessment. In this paper, we introduce a new framework to improve machine learning fairness. The goal of our model is to minimize the influence of sensitive feature from the perspectives of both data input and predictive model. To achieve this goal, we reformulate the data input by eliminating the sensitive information and strengthen model fairness by minimizing the marginal contribution of the sensitive feature. We propose to learn the sensitive-irrelevant input via sampling among features and design an adversarial network to minimize the dependence between the reformulated input and the sensitive information. Empirical results validate that our model achieves comparable or better results than related state-of-the-art methods w.r.t. both fairness metrics and prediction performance.more » « less
- 
            As machine learning (ML) algorithms are increasingly used in high-stakes applications, concerns have arisen that they may be biased against certain social groups. Although many approaches have been proposed to make ML models fair, they typically rely on the assumption that data distributions in training and deployment are identical. Unfortunately, this is commonly violated in practice and a model that is fair during training may lead to an unexpected outcome during its deployment. Although the problem of designing robust ML models under dataset shifts has been widely studied, most existing works focus only on the transfer of accuracy. In this paper, we study the transfer of both fairness and accuracy under domain generalization where the data at test time may be sampled from never-before-seen domains. We first develop theoretical bounds on the unfairness and expected loss at deployment, and then derive sufficient conditions under which fairness and accuracy can be perfectly transferred via invariant representation learning. Guided by this, we design a learning algorithm such that fair ML models learned with training data still have high fairness and accuracy when deployment environments change. Experiments on real-world data validate the proposed algorithm.more » « less
- 
            Predictive policing, the practice of using of algorithmic systems to forecast crime, is heralded by police departments as the new frontier of crime analysis. At the same time, it is opposed by civil rights groups, academics, and media outlets for being ‘biased’ and therefore discriminatory against communities of color. This paper argues that the prevailing focus on racial bias has overshadowed two normative factors that are essential to a full assessment of the moral permissibility of predictive policing: fairness in the social distribution of the benefits and burdens of policing as well as the distinctive role of consent in determining fair distribution. When these normative factors are given their due attention, several requirements emerge for the fair implementation of predictive policing. Among these requirements are that police departments inform and solicit buy-in from affected communities about strategic decision-making and that departments favor non-enforcement-oriented interventions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    