skip to main content


Title: Oxygen Isotopic Signatures of Major Climate Modes and Implications for Detectability in Speleothems
Abstract

Natural and social systems worldwide are impacted by climate modes such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO), making it imperative to understand their sensitivity to climate change. Paleoclimate studies extend the observational climate baseline, and speleothem records (δ18Ospel) are a common data source. However, relationships between δ18Ospeland climate modes are uncertain; climate models provide a way to test the strength and stability of these relationships. Here, we use the isotope‐enabled Community Earth System Model's Last Millennium Ensemble combined with a forward proxy model to delineate the global expression of modal variability in “pseudo‐stalagmite” (δ18Ospel) records worldwide. The modeled δ18Ospelspatially correlates with modal signatures. However, substantial changes in modal variance only modestly affect individual δ18Ospelvariance. A network of δ18Ospelrecords, particularly one that straddles the Pacific, significantly improves the reconstructability of ENSO variance.

 
more » « less
Award ID(s):
1805143 1702271
NSF-PAR ID:
10452588
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
1
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Salinity in the Indonesian seas integrates regional oceanographic and atmospheric processes, such as Indonesian Throughflow (ITF) and monsoon rainfall. Here we present a multicentury (1777–1983) δ18O coral record from Nightcliff Reef, located in the Timor Passage off the coast of northern Australia, which we use to infer local salinity change. We show that Australian monsoon rainfall and ITF influence salinity at the study site. These reconstructed salinity changes in the Timor Passage correlate with changes in Pacific sea surface temperature (SST) modes, including the El Niño Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). While environmental stress creates challenging conditions for coral growth, this record particularly tracks the central Pacific signature of ENSO‐driven interannual variability, in agreement with reconstructions of rainfall across northern Australia. The strength of interannual variance in the record follows fluctuations in other local ENSO‐sensitive rainfall reconstructions, demonstrating a strong regional ENSO signature. However, this regional pattern differs from variance in composite ENSO reconstructions, suggesting that the multi‐site nature of these reconstructions may create biases. Salinity variability on decadal and longer time scales occurs throughout the record. Some of these oscillations are consistent with other ITF‐sensitive coral records. Our new salinity record adds a strongly Pacific‐sensitive record to the existing suite of regional paleoclimate reconstructions. Relationships among these records highlight the complexity of salinity in the Indonesian seas and the controls on its variability.

     
    more » « less
  2. Abstract Characterizing variability in the global water cycle is fundamental to predicting impacts of future climate change; understanding the role of the Pacific Walker circulation (PWC) in the regional expression of global water cycle changes is critical to understanding this variability. Water isotopes are ideal tracers of the role of the PWC in global water cycling because they retain information about circulation-dependent processes including moisture source, transport, and delivery. We collated publicly available measurements of precipitation δ 18 O ( δ 18 O P ) and used novel data processing techniques to synthesize long (34 yr), globally distributed composite records from temporally discontinuous δ 18 O P measurements. We investigated relationships between global-scale δ 18 O P variability and PWC strength, as well as other possible drivers of global δ 18 O P variability—including El Niño–Southern Oscillation (ENSO) and global mean temperature—and used isotope-enabled climate model simulations to assess potential biases arising from uneven geographical distribution of the observations or our data processing methodology. Covariability underlying the δ 18 O P composites is more strongly correlated with the PWC ( r = 0.74) than any other index of climate variability tested. We propose that the PWC imprint in global δ 18 O P arises from multiple complementary processes, including PWC-related changes in moisture source and transport length, and a PWC- or ENSO-driven “amount effect” in tropical regions. The clear PWC imprint in global δ 18 O P implies a strong PWC influence on the regional expression of global water cycle variability on interannual to decadal time scales, and hence that uncertainty in the future state of the PWC translates to uncertainties in future changes in the global water cycle. 
    more » « less
  3. Abstract

    Recent studies have revealed robust in‐phase relationships between El Niño–Southern Oscillation (ENSO) and Asian Monsoon precipitation δ18O values (i.e., warm ENSO events with high δ18O values), and this relationship has been used in an attempt to reconstruct past ENSO activity. However, whether this relationship holds in the past is unknown. Here we use precipitation δ18O data from Hong Kong (East Asia) and Bangkok (Southeast Asia) and an ice core δ18O record from Dasuopu glacier (South Asia) to examine the δ18O‐ENSO relationship across two recent climate shifts that occurred during the winters of 1976/1977 and 1988/1989. On an annual scale, the δ18O‐ENSO relationship is weak prior to 1977 and strongest after 1988. We show that the changing δ18O‐ENSO relationship mainly originates from changes in the dry season isotope/climate relationship (which is significant only after 1988), whereas the rainy season relationship is relatively stable. We confirm that, consistent with earlier work on the rainy season, the significant δ18O‐ENSO relationship in the dry season post‐1988 is associated with ENSO's influence on regional convection (Bay of Bengal to South China Sea region). We suggest the insignificant dry season relationship prior to 1989 is due to limited ENSO impacts on convection in the Bay of Bengal to South China Sea region, which is supported by the insignificant relationship between ENSO and vertical velocity at 500 hPa. These findings suggest that without additional constraints, systematic variability in isotope/climate relationships will lead to large uncertainties in ENSO reconstructions based on Asian Monsoon region δ18O data.

     
    more » « less
  4. Abstract

    The El Niño‐Southern Oscillation (ENSO) is a natural climate phenomenon that alters the biogeochemical and physical dynamics of the Eastern Tropical Pacific Ocean. Its two phases, El Niño and La Niña, are characterized by decreased and increased coastal upwelling, respectively, which have cascading effects on primary productivity, organic matter supply, and ocean‐atmosphere interactions. The Eastern Tropical South Pacific oxygen minimum zone is a source of nitrous oxide (N2O), a potent greenhouse gas, to the atmosphere. Here, we present the first study to directly compare N2O sources during opposing ENSO phases using N2O isotopocule analyses. Our data show that during La Niña, N2O accumulation increased six‐fold in the upper 100 m of the water column, and N2O fluxes to the atmosphere increased up to 20‐fold. N2O isotopocule data demonstrated substantial increases in δ18O up to 60.5‰ and decreases in δ15Nβdown to −10.3‰ in the oxycline, signaling a shift in N2O cycling during La Niña compared to El Niño. During El Niño, N2O production was primarily due to ammonia‐oxidizing archaea, whereas during La Niña, N2O production by incomplete denitrification supplemented that from ammonia‐oxidation, with N2O consumption likely maintaining the high site preference values (up to 26.7‰). Ultimately, our results illustrate a strong connection between upwelling intensity, biogeochemistry, and N2O flux to the atmosphere. Additionally, they highlight the combined power of N2O isotopocule analysis and repeat measurements in the same region to constrain N2O interannual variability and cycling dynamics under different climate scenarios.

     
    more » « less
  5. Abstract

    We present a statistically robust reconstruction of Thailand's Chao Phraya River peak season streamflow (CPRPF) that spans the 202 years from 1804 to 2005 CE. Our reconstruction is based on tree ring δ18O series derived from threePinus merkusiisites from Laos and Thailand. The regional δ18O index accounts for 57% of the observed variance of CPRPF. Spatial correlation and 21‐year running correlation analyses reveal that CPRPF is greatly influenced by regional precipitation variations associated with the El Niño–Southern Oscillation (ENSO). Periods of enhanced and reduced ENSO activity are associated with strong and weak ENSO‐streamflow correlation, respectively. At the longer timescale, the Pacific Decadal Oscillation (PDO) appears to modulate the ENSO‐streamflow correlations, with the most extreme flood events along the Chao Phraya River occurring during periods of increased frequency of La Niña events that coincide with extended cold phases of the PDO. The CPRPF reconstruction could aid management planning for Thailand's water resources.

     
    more » « less