skip to main content

Title: Mixed Reality Multimedia Learning to Facilitate Learning Outcomes from Project Based Learning
Effective construction engineering and management education requires hands-on experiences that have not traditionally been offered in classroom settings. Physical building competitions like Solar Decathlon are valuable for providing experiential learning opportunities that may support tacit and explicit knowledge development among students, but they are often not available to all students due to funding and resource limitations. Less resource intensive teaching strategies, such as project based learning, can mimic the benefit of physical experiences by providing context to learning content. This paper reviews project based learning literature to identify trends in reported learning gains from the adoption of this strategy. Additionally, emerging technologies offer the ability to create low cost, immersive multimedia environments that may be able to support the types of learning targeted by physical design and construction experiences. Literature on multimedia learning theory is explored to identify opportunities for multimedia applications to facilitate learnings derived by physical educational contexts, but with the use of increasingly affordable multimedia strategies. This paper resulted in identifying six learning gains that have a theoretical potential to be facilitated using augmented reality and virtual reality technologies. The theoretical potential was deduced based on prior research on teaching strategies that provide real-world context to learning more » content. The authors of this paper propose using the identified learning gains as targets to specifically design implementation studies to verify this potential. The learning gains identified in the results section can be targeted and measured in future research when empirically validating the use of immersive technologies for construction education. The contribution of this work is in synthesizing the learning gains that future researchers should target based on evidence from prior research in related learning contexts. « less
Authors:
; ; ;
Editors:
Tang, Pingbo; Grau, David; Asmar, Mounir E.
Award ID(s):
1735804
Publication Date:
NSF-PAR ID:
10277282
Journal Name:
Construction Research Congress 2020: Computer Applications
Page Range or eLocation-ID:
153 to 161
Sponsoring Org:
National Science Foundation
More Like this
  1. Effective construction engineering and management education requires hands-on experiences that have not traditionally been offered in classroom settings. Physical building competitions like Solar Decathlon are valuable for providing experiential learning opportunities that may support tacit and explicit knowledge development among students, but they are often not available to all students due to funding and resource limitations. Less resource intensive teaching strategies, such as project based learning, can mimic the benefit of physical experiences by providing context to learning content. This paper reviews project based learning literature to identify trends in reported learning gains from the adoption of this strategy. Additionally,more »emerging technologies offer the ability to create low cost, immersive multimedia environments that may be able to support the types of learning targeted by physical design and construction experiences. Literature on multimedia learning theory is explored to identify opportunities for multimedia applications to facilitate learnings derived by physical educational contexts, but with the use of increasingly affordable multimedia strategies. This paper resulted in identifying six learning gains that have a theoretical potential to be facilitated using augmented reality and virtual reality technologies. The theoretical potential was deduced based on prior research on teaching strategies that provide real-world context to learning content. The authors of this paper propose using the identified learning gains as targets to specifically design implementation studies to verify this potential. The learning gains identified in the results section can be targeted and measured in future research when empirically validating the use of immersive technologies for construction education. The contribution of this work is in synthesizing the learning gains that future researchers should target based on evidence from prior research in related learning contexts.« less
  2. Dawood, Nashwan ; Rahimian, Farzad P. ; Seyedzadeh, Saleh ; Sheikhkhoshkar, Moslem (Ed.)
    The growth in the adoption of sensing technologies in the construction industry has triggered the need for graduating construction engineering students equipped with the necessary skills for deploying the technologies. One obstacle to equipping students with these skills is the limited opportunities for hands-on learning experiences on construction sites. Inspired by opportunities offered by mixed reality, this paper presents the development of a holographic learning environment that can afford learners an experiential opportunity to acquire competencies for implementing sensing systems on construction projects. The interactive holographic learning environment is built upon the notions of competence-based and constructivist learning. The learningmore »contents of the holographic learning environment are driven by characteristics of technical competencies identified from the results of an online survey, and content analysis of industry case studies. This paper presents a competency characteristics model depicting the key sensing technologies, applications and resources needed to facilitate the design of the holographic learning environment. A demonstrative scenario of the application of a virtual laser scanner for measuring volume of stockpiles is utilized to showcase the potential of the learning environment. A taxonomic model of the operational characteristics of the virtual laser scanner represented within the holographic learning environment is also presented. This paper contributes to the body of knowledge by advancing immersive experiential learning discourses previously confined by technology. It opens a new avenue for both researchers and practitioners to further investigate the opportunities offered by mixed reality for future workforce development.« less
  3. There is a cohesive body of research on the effectiveness of problem-based learning (PBL) for a wide range of learner groups across different disciplines in engineering education. On the other hand, there is a growing interest in using immersive technologies such as virtual reality (VR) in engineering education. While there are many literature review articles on each of these subjects separately, there is a lack of review articles on the application of combined PBL-VR learning environments in engineering education. This paper provides an assessment of the applications and potential of implementing immersive technologies in a PBL setting to utilize themore »advantages of both paradigms. More specifically, this paper aims to provide insights related to two main questions: (1) where (in what disciplines/subjects) PBL and VR have been used together in engineering education? And, (2) how are VR and PBL integrated and used in engineering education? The first question is investigated by performing a bibliometric analysis of relevant papers published in the proceedings of previous ASEE annual conferences. The second question is explored by performing a literature review and classification of ASEE papers that discuss the use of VR in conjunction with PBL. Our findings reveal a gap between the application of integrated PBL and VR across different disciplines in engineering education. We also analyze the trends related to PBL and VR application in engineering education over time. Finally, we identify and propose future opportunities related to the combination of PBL and immersive technologies, including but not limited to immersive simulation-based learning (ISBL) and incorporating artificial intelligence (AI) into immersive virtual/simulated learning environments used in engineering education.« less
  4. This WIP presentation is intended to share and gather feedback on the development of an observation protocol for K-12 integrated STEM instruction, the STEM-OP. Specifically, the STEM-OP is being developed for use in K-12 science and/or engineering settings where integrated STEM instruction takes place. While the importance of integrated STEM education is established through national policy documents, there remains disagreement on models and effective approaches for integrated STEM instruction. Our broad definition of integrated STEM includes the use of two or more STEM disciplines to solve a real-world problem or design challenge that supports student development of 21st century skills.more »This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning that can be used to inform research of the effectiveness of new models and strategies. Existing instruments most commonly used by researchers, such as the Reformed Teaching Observation Protocol (RTOP), were designed prior to the development of the Next Generation Science Standards and the integration of engineering into science standards. These instruments were also designed for use in reform-based science classrooms, not engineering or integrated STEM learning environments. While engineering-focused observation protocols do exist for K-12 classrooms, they do not evaluate beyond an engineering focus, making them limited tools to evaluate integrated STEM instruction. In order to facilitate the implementation of integrated STEM in K-12 classrooms and the development of the nascent integrated STEM education literature, our research team is developing a new integrated STEM observation protocol for use in K-12 science and engineering classrooms. This valid and reliable instrument will be designed for use in a variety of educational contexts and by different education stakeholders to increase the quality of K-12 STEM education. At the end of this project, the STEM-OP will be made available through an online platform that will include an embedded training program to facilitate its broad use. In the first year of this four-year project, we are working on the initial development of the STEM-OP through video analysis and exploratory factor analysis. We are utilizing existing classroom video from a previous project with approximately 2,000 unique classroom videos representing a variety of grade levels (4-9), science content (life, earth, and physical science), engineering design challenges, and school demographics (urban, suburban). The development of the STEM-OP is guided by published frameworks that focus on providing quality K-12 integrated STEM and engineering education, such as the Framework for Quality K-12 Engineering Education. Our anticipated results at the time the ASEE meeting will include a review of our item development process and finalized items included on the draft STEM-OP. Additionally, we anticipate being able to share findings from the exploratory factor analysis (EFA) on our video-coded data, which will identify distinct instructional dimensions responsible for integrated STEM instruction. We value the opportunity to gather feedback from the engineering education community as the integration of engineering design and practices is integral to quality integrated STEM instruction.« less
  5. While virtual reality (VR) might be effective in engaging learners with authentic and immersive learning experiences, current literature is lacking in understanding the relationship between learners’ perceived cognitive loads and motivational support. In addition, it is unclear as to how the incorporation of game-based learning strategies might impact the overall efficacy of VR for instructional purposes. The presentation reports a NSF-funded project that utilizes the HTC Vive VR system to host a game-based VR learning environment for teaching introductory archaeology classes in a US Midwestern university. The presentation will also report the results of multiple regression analyses to delineate relationshipsmore »between cognitive loads and motivational components based on survey responses of 106 participants. The presentation will conclude by discussing game-based VR design opportunities and challenges in terms of the role of motivational design, design efficiencies and their unintended consequences.« less