- Award ID(s):
- 1800392
- Publication Date:
- NSF-PAR ID:
- 10277336
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 23
- Issue:
- 7
- Page Range or eLocation-ID:
- 4287 to 4299
- ISSN:
- 1463-9076
- Sponsoring Org:
- National Science Foundation
More Like this
-
Ligand selectivity to specific lanthanide (Ln) ions is key to the separation of rare earth elements from each other. Ligand selectivity can be quantified with relative stability constants (measured experimentally) or relative binding energies (calculated computationally). The relative stability constants of EDTA (ethylenediaminetetraacetic acid) with La 3+ , Eu 3+ , Gd 3+ , and Lu 3+ were predicted from relative binding energies, which were quantified using electronic structure calculations with relativistic effects and based on the molecular structures of Ln–EDTA complexes in solution from density functional theory molecular dynamics simulations. The protonation state of an EDTA amine group was varied to study pH ∼7 and ∼11 conditions. Further, simulations at 25 °C and 90 °C were performed to elucidate how structures of Ln–EDTA complexes varying with temperature are related to complex stabilities at different pH conditions. Relative stability trends are predicted from computation for varying Ln 3+ ions (La, Eu, Gd, Lu) with a single ligand (EDTA at pH ∼11), as well as for a single Ln 3+ ion (La) with varying ligands (EDTA at pH ∼7 and ∼11). Changing the protonation state of an EDTA amine site significantly changes the solution structure of the Ln–EDTA complex resulting inmore »
-
We report here the characterization in solution (NMR, luminescence, MS) and the solid-state (X-ray crystallography, IR) of complexes between phenacyldiphenylphosphine oxide and five Ln( iii ) ions (Sm, Eu, Gd, Tb, Dy). Four single crystal X-ray structures are described here showing a 1 : 2 ratio between the Ln 3+ ions Eu, Dy, Sm and Gd and the ligand, where the phosphine oxide ligands are bound in a monodentate manner to the metal center. A fifth structure is reported for the 1 : 2 Eu(NO 3 ) 3 -ligand complex showing bidentate binding between the two ligands and the metal center. The solution coordination chemistry of these metal complexes was probed by 1 H, 13 C and 31 P NMR, mass spectrometry, and luminescence experiments. The title ligand has the capability to sensitize Tb 3+ , Dy 3+ , Eu 3+ and Sm 3+ leading to metal-centered emission in solutions of acetonitrile and methanol and in the solid state.
-
Abstract Americium is a highly radioactive actinide element found in used nuclear fuel. Its adsorption on aluminum (hydr)oxide minerals is important to study for at least two reasons: (i) aluminum (hydr)oxide minerals are ubiquitous in the subsurface environment and (ii) bentonite clays, which are proposed engineered barriers for the geologic disposal of used nuclear fuel, have the same ≡AlOH sites as aluminum (hydr)oxide minerals. Surface complexation modeling is widely used to interpret the adsorption behavior of heavy metals on mineral surfaces. While americium sorption is understudied, multiple adsorption studies for europium, a chemical analog, are available. In this study we compiled data describing Eu(III) adsorption on three aluminum (hydr)oxide minerals—corundum (α-Al 2 O 3 ), γ-alumina (γ-Al 2 O 3 ) and gibbsite (γ-Al(OH) 3 )—and developed surface complexation models for Eu(III) adsorption on these minerals by employing diffuse double layer (DDL) and charge distribution multisite complexation (CD-MUSIC) electrostatic frameworks. We also developed surface complexation models for Am(III) adsorption on corundum (α-Al 2 O 3 ) and γ-alumina (γ-Al 2 O 3 ) by employing a limited number of Am(III) adsorption data sourced from literature. For corundum and γ-alumina, two different adsorbed Eu(III) species, one each for strong and weakmore »
-
Four groups of rare-earth complexes, comprising 11 new compounds, with fluorinated O-donor ligands ([K(THF)6][Ln(OC4F9)4(THF)2] (1-Ln; Ln = Ce, Nd), [K](THF)x[Ln(OC4F9)4(THF)y] (2-Ln; Ln = Eu, Gd, Dy), [K(THF)2][Ln(pinF)2(THF)3] (3-Ln; Ln = Ce, Nd), and [K(THF)2][Ln(pinF)2(THF)2] (4-Ln; Ln = Eu, Gd, Dy, Y) have been synthesized and characterized. Single-crystal X-ray diffraction data were collected for all compounds except 2-Ln. Species 1-Ln, 3-Ln, and 4-Ln are uncommon examples of six-coordinate (Eu, Gd, Dy, and Y) and seven-coordinate (Ce and Nd) LnIII centers in all-O-donor environments. Species 1-Ln, 2-Ln, 3-Ln, and 4-Ln are all luminescent (except where Ln = Gd and Y), with the solid-state emission of 1-Ce being exceptionally blue-shifted for a Ce complex. The emission spectra of the six Nd, Eu, and Dy complexes do not show large differences based on the ligand and are generally consistent with the well-known free-ion spectra. Time-dependent density functional theory results show that 1-Ce and 3-Ce undergo allowed 5f → 4d excitations, consistent with luminescence lifetime measurements in the nanosecond range. Eu-containing 2-Eu and 4-Eu, however, were found to have luminescence lifetimes in the millisecond range, indicating phosphorescence rather than fluorescence. The performance of a pair of multireference models for prediction of the Ln = Nd,more »
-
Abstract New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light‐emitting materials. A new design of Eu‐containing polymer hydrogels showing fast self‐healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu–iminodiacetate (IDA) coordination in a hydrophilic poly(
N,N ‐dimethylacrylamide) matrix. Dynamic metal–ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self‐healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol–gel transition through the reversible formation and dissociation of Eu–IDA complexes upon various stimuli. It is demonstrated that Eu‐containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required.