- Award ID(s):
- 1735235
- Publication Date:
- NSF-PAR ID:
- 10277365
- Journal Name:
- Sustainability
- Volume:
- 13
- Issue:
- 4
- Page Range or eLocation-ID:
- 2359
- ISSN:
- 2071-1050
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this study, we systematically investigated the effects of thermal air oxidation on the properties of biomass-derived BC made at carbonization temperatures (HTTs) of 300–700 ˚C. BC produced by including air in the carbonization step was found to have a low surface area and underdeveloped pore structure. Substantial changes of BC were observed after post-pyrolysis thermal air oxidation (PPAO). Well-carbonized BC samples made anoxically at relatively high HTTs (600 and 700 ˚C) showed, after PPAO, significant increases in N2 BET surface area (SA) (up to 700 times), porosity (< 60 Å) (up to 95 times), and adsorptivity (up to 120 times) of neutral organic species including two triazine herbicides and one natural estrogen. Partially carbonized BC made at a lower HTT (300 or 400 ˚C) showed moderate increases in these properties after PPAO, but a large increase in the intensity of Fourier transform infrared spectroscopy bands corresponding to various oxygen-containing functional groups. Well-carbonized BC samples, on the other hand, were deficient in surface oxygen functionality even after the PPAO treatment. Adsorption of the test organic compounds on BC generally trended with BET SA when it was less than 300 m2/g, but BET SA was poorly predictive of adsorption when itmore »
-
Abstract Background Woody biomass has been considered as a promising feedstock for biofuel production via thermochemical conversion technologies such as fast pyrolysis. Extensive Life Cycle Assessment studies have been completed to evaluate the carbon intensity of woody biomass-derived biofuels via fast pyrolysis. However, most studies assumed that woody biomass such as forest residues is a carbon–neutral feedstock like annual crops, despite a distinctive timeframe it takes to grow woody biomass. Besides, few studies have investigated the impacts of forest dynamics and the temporal effects of carbon on the overall carbon intensity of woody-derived biofuels. This study addressed such gaps by developing a life-cycle carbon analysis framework integrating dynamic modeling for forest and biorefinery systems with a time-based discounted Global Warming Potential (GWP) method developed in this work. The framework analyzed dynamic carbon and energy flows of a supply chain for biofuel production from pine residues via fast pyrolysis.
Results The mean carbon intensity of biofuel given by Monte Carlo simulation across three pine growth cases ranges from 40.8–41.2 g CO2e MJ−1(static method) to 51.0–65.2 g CO2e MJ−1(using the time-based discounted GWP method) when combusting biochar for energy recovery. If biochar is utilized as soil amendment, the carbon intensity reduces to 19.0–19.7 g CO2e MJ−1(static method)more »
Conclusions The carbon temporal effect, particularly the time lag of carbon sequestration during pine growth, has direct impacts on the carbon intensity of biofuels produced from pine residues from a stand-level pine growth and management point of view. The carbon implications are also significantly impacted by the assumptions of biochar end-of-life cases and forest management strategies.
-
Despite the promise of waste-to-energy conversions, bio-oils produced via thermochemical techniques such as pyrolysis suf- fer from high viscosity and acidity, which render the oils unstable and corrosive. While pyrolysis biocrude can be upgraded downstream, the use of precious metal catalysts limits the economic feasibility of biomass to biofuel conversions. To address these economic limitations, the present work explores the use of clay minerals as inexpensive catalysts to upgrade bio-oils in situ. Cherry pits, a representative carbonaceous agro-industrial waste, were pyrolyzed at 600 °C for 1 h in the presence of a series of clay minerals. For some clays, the bio-oils produced from catalyzed pyrolysis exhibited lower oxygen and fatty acid content than bio-oil from non-catalyzed pyrolysis. The heterogeneous clay-cherry pit biochar mixtures had higher surface areas and surface chemistries with increased free and intermolecularly bonded hydroxyl groups relative to those of pure cherry pit biochar. However, adsorption studies using methylene blue as a model organic contaminant showed that these heterogenous chars had a decreased adsorption capacity, likely due to a loss of surface functional groups. The addition of clay materials to the pyrolysis stream yields a biocrude more amendable to downstream upgrading and a heterogeneous biochar-clay mixture capable ofmore »
-
Slag and Al/Mg oxide modified Douglas fir biochar (AMOB) were compared for their phosphate adsorbing abilities for use individually or in combination for simulated agriculture run-off remediation in wetlands. Aqueous batch and column sorption experiments were performed for both low-cost materials. AMOB was prepared in bulk using a novel green method. Material analyses included XRD, elemental analysis, SEM, EDX, and BET. Biochar and slag have different phosphate removal mechanisms. In short residence times (≤2 h), adsorption phenomena dominate for both adsorbents. Surface area likely plays a role in adsorption performance; slag was measured to be 4.1 m2/g while biochar’s surface area was 364.1 m2/g. In longer residence times (>2 h), the slow leaching of metals (Ca, Al, and Mg) from slag continue to remove phosphate through the precipitation of metal phosphates. In 24 h, slag removed more free phosphate from the solution than AMOB. Preliminary fixed bed column adsorption of slag or AMOB alone and in tandem was performed adopting a scaled-up model that can be used to remediate agricultural runoff with high phosphate content. Additionally, a desorption study was performed to analyze the efficiency of material regeneration. While AMOB does not release any adsorbed phosphates, slag slowly releases 5.7%more »
-
Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings.