Bacterial–fungal interactions revealed by genome-wide analysis of bacterial mutant fitness
- Award ID(s):
- 1817955
- PAR ID:
- 10277399
- Date Published:
- Journal Name:
- Nature Microbiology
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2058-5276
- Page Range / eLocation ID:
- 87 to 102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions.more » « less
-
null (Ed.)Reports of biogenic methane (CH 4 ) synthesis associated with a range of organisms have steadily accumulated in the literature. This has not happened without controversy and in most cases the process is poorly understood at the gene and enzyme levels. In marine and freshwater environments, CH 4 supersaturation of oxic surface waters has been termed the “methane paradox” because biological CH 4 synthesis is viewed to be a strictly anaerobic process carried out by O 2 -sensitive methanogens. Interest in this phenomenon has surged within the past decade because of the importance of understanding sources and sinks of this potent greenhouse gas. In our work on Yellowstone Lake in Yellowstone National Park, we demonstrate microbiological conversion of methylamine to CH 4 and isolate and characterize an Acidovorax sp. capable of this activity. Furthermore, we identify and clone a gene critical to this process (encodes pyridoxylamine phosphate-dependent aspartate aminotransferase) and demonstrate that this property can be transferred to Escherichia coli with this gene and will occur as a purified enzyme. This previously unrecognized process sheds light on environmental cycling of CH 4 , suggesting that O 2 -insensitive, ecologically relevant aerobic CH 4 synthesis is likely of widespread distribution in the environment and should be considered in CH 4 modeling efforts.more » « less
An official website of the United States government

