skip to main content


Title: Unpiloted Aerial Vehicle Retrieval of Snow Depth Over Freshwater Lake Ice Using Structure From Motion
The presence and thickness of snow overlying lake ice affects both the timing of melt and ice-free conditions, can contribute to overall ice thickness through its insulative capacity, and fosters the development of variable ice types. The use of UAVs to retrieve snow depths with high spatial resolution is necessary for the next generation of ultra-fine hydrological models, as the direct contribution of water from snow on lake ice is unknown. Such information is critical to the understanding of the physical processes of snow redistribution and capture in catchments on small lakes in the Arctic, which has been historically estimated from its relationship to terrestrial snowpack properties. In this study, we use a quad-copter UAV and SfM principles to retrieve and map snow depth at the winter maximum at high resolution over a the freshwater West Twin Lake on the Arctic Coastal Plain of northern Alaska. The accuracy of the snow depth retrievals is assessed using in-situ observations ( n = 1,044), applying corrections to account for the freeboard of floating ice. The average snow depth from in-situ observations was used calculate a correction factor based on the freeboard of the ice to retrieve snow depth from UAV acquisitions (RMSE = 0.06 and 0.07 m for two transects on the lake. The retrieved snow depth map exhibits drift structures that have height deviations with a root mean square (RMS) of 0.08 m (correlation length = 13.8 m) for a transect on the west side of the lake, and an RMS of 0.07 m (correlation length = 18.7 m) on the east. Snow drifts present on the lake also correspond to previous investigations regarding the variability of snow on lakes, with a periodicity (separation) of 20 and 16 m for the west and east side of the lake, respectively. This study represents the first retrieval of snow depth on a frozen lake surface from a UAV using photogrammetry, and promotes the potential for high-resolution snow depth retrieval on small ponds and lakes that comprise a significant portion of landcover in Arctic environments.  more » « less
Award ID(s):
1806213
NSF-PAR ID:
10277617
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Remote Sensing
Volume:
2
ISSN:
2673-6187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Lakes in the Arctic are important reservoirs of heat withmuch lower albedo in summer and greater absorption of solar radiation thansurrounding tundra vegetation. In the winter, lakes that do not freeze totheir bed have a mean annual bed temperature >0 ∘C inan otherwise frozen landscape. Under climate warming scenarios, we expectArctic lakes to accelerate thawing of underlying permafrost due to warmingwater temperatures in the summer and winter. Previous studies of Arcticlakes have focused on ice cover and thickness, the ice decay process,catchment hydrology, lake water balance, and eddy covariance measurements,but little work has been done in the Arctic to model lake heat balance. Weapplied the LAKE 2.0 model to simulate water temperatures in three Arcticlakes in northern Alaska over several years and tested the sensitivity ofthe model to several perturbations of input meteorological variables(precipitation, shortwave radiation, and air temperature) and several modelparameters (water vertical resolution, sediment vertical resolution, depthof soil column, and temporal resolution). The LAKE 2.0 model is aone-dimensional model that explicitly solves vertical profiles of waterstate variables on a grid. We used a combination of meteorological data fromlocal and remote weather stations, as well as data derived from remotesensing, to drive the model. We validated modeled water temperatures withdata of observed lake water temperatures at several depths over severalyears for each lake. Our validation of the LAKE 2.0 model is a necessarystep toward modeling changes in Arctic lake ice regimes, lake heat balance,and thermal interactions with permafrost. The sensitivity analysis shows usthat lake water temperature is not highly sensitive to small changes in airtemperature or precipitation, while changes in shortwave radiation and largechanges in precipitation produced larger effects. Snow depth and lake icestrongly affect water temperatures during the frozen season, which dominatesthe annual thermal regime of Arctic lakes. These findings suggest thatreductions in lake ice thickness and duration could lead to more heatstorage by lakes and enhanced permafrost degradation. 
    more » « less
  2. Abstract

    Processes regulating the rate of oxygen depletion determine whether hypoxia occurs and the extent to which greenhouse gases accumulate in seasonally ice‐covered lakes. Here, we investigate the oxygen budget of four arctic lakes using high‐frequency data during two winters in three shallow lakes (9–13 m maximal depth) and four winters in 24 m deep main basin of Toolik Lake. Incubation experiments measured sediment metabolism. Volume‐averaged oxygen depletion measured in situ was independent of water temperature and duration of the ice‐covered period. Average rates were between 0.2 and 0.39 g O2 m−2 d−1in the shallow lakes and between 0.03 and 0.14 g O2 m−2 d−1in Toolik Lake, with higher rates in smaller lakes with their larger sediment area to volume ratio. Rates decreased to ~ 20%–50% of initial values in late winter in the shallow lakes but less or not at all in Toolik. The lack of a decline in Toolik Lake points to continued oxygen transport to the sediment–water interface where oxygen consumption occurs. In all lakes, lower in situ oxygen depletion than in incubation measurements points toward increasing anoxia in the lower water column depressing loss rates. In Toolik, oxygen loss during early winter was less in years with minimal snow cover. Penetrative convection occurred, which could mix downwards oxygen produced by photosynthesis or excluded during ice formation. Estimates of these terms exceeded photosynthesis measured in sediment incubations. Modeling under ice‐oxygen dynamics requires consideration of optical properties and biological and transport processes that modify oxygen concentrations and distributions.

     
    more » « less
  3. Assimilation of remote-sensing products of sea ice thickness (SIT) into sea ice–ocean models has been shown to improve the quality of sea ice forecasts. Key open questions are whether assimilation of lower-level data products such as radar freeboard (RFB) can further improve model performance and what performance gains can be achieved through joint assimilation of these data products in combination with a snow depth product. The Arctic Mission Benefit Analysis system was developed to address this type of question. Using the quantitative network design (QND) approach, the system can evaluate, in a mathematically rigorous fashion, the observational constraints imposed by individual and groups of data products. We demonstrate the approach by presenting assessments of the observation impact (added value) of different Earth observation (EO) products in terms of the uncertainty reduction in a 4-week forecast of sea ice volume (SIV) and snow volume (SNV) for three regions along the Northern Sea Route in May 2015 using a coupled model of the sea ice–ocean system, specifically the Max Planck Institute Ocean Model. We assess seven satellite products: three real products and four hypothetical products. The real products are monthly SIT, sea ice freeboard (SIFB), and RFB, all derived from CryoSat-2 by the AlfredWegener Institute. These are complemented by two hypothetical monthly laser freeboard (LFB) products with low and high accuracy, as well as two hypothetical monthly snow depth products with low and high accuracy. On the basis of the per-pixel uncertainty ranges provided with the CryoSat-2 SIT, SIFB, and RFB products, the SIT and RFB achieve a much better performance for SIV than the SIFB product. For SNV, the performance of SIT is only low, the performance of SIFB is higher and the performance of RFB is yet higher. A hypothetical LFB product with low accuracy (20 cm uncertainty) falls between SIFB and RFB in performance for both SIV and SNV. A reduction in the uncertainty of the LFB product to 2 cm yields a significant increase in performance. Combining either of the SIT or freeboard products with a hypothetical snow depth product achieves a significant performance increase. The uncertainty in the snow product matters: a higher-accuracy product achieves an extra performance gain. Providing spatial and temporal uncertainty correlations with the EO products would be beneficial not only for QND assessments, but also for assimilation of the products. 
    more » « less
  4. Abstract

    Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes draining year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.

     
    more » « less
  5. Antarctic subglacial lakes can play an important role in ice sheet dynamics, biology, geology, and oceanography, but it is difficult to definitively constrain their character and locations. Subglacial lake locations are related to factors including heat flux, ice surface slope, ice thickness, and bed topography, though these relationships are not fully quantified. Bed topography is particularly important for determining where water flows and accumulates, but digital elevation models of the ice sheet bed rely on interpolation and are unrealistically smooth, biasing estimates of subglacial lake location and surface area. To address this issue, we use geostatistical methods to simulate realistically rough bed topography. We use our simulated topography to predict subglacial lake distribution across the continent using a binomial logistic regression, which uses physical parameters and known lake locations to calculate the probabilities of lake occurrences. Our results suggest that topography models interpolated without appropriate geostatistics overestimate subglacial lake surface area and that total lake surface area is lower than previously predicted. We find that radar‐detected lakes are more likely to occur in the interior of East Antarctica, while altimetry‐detected (active) lakes are expected to be found in West Antarctica and near the grounding line. We observe that radar‐detected lakes have a high correlation with heat flux and ice thickness, while active lakes are associated with higher ice velocity.

     
    more » « less