skip to main content


Title: Rotationally tunable varifocal 3D metalens

Varifocal optics have a variety of applications in imaging systems. Metasurfaces offer control of the phase, transmission, and polarization of light using subwavelength engineered structures. However, conventional metasurface designs lack dynamic wavefront shaping which limits their application. In this work, we design and fabricate 3D doublet metalenses with a tunable focal length. The phase control of light is obtained through the mutual rotation of the singlet structures. Inspired by Moiré lenses, the proposed structure consists of two all-dielectric metasurfaces. The singlets have reverse-phase profiles resulting in the cancellation of the phase shift in the nominal position. In this design, we show that the mutual rotation of the elements produces different wavefronts with quadratic radial dependence. Thus, an input plane wave is converted to spherical wavefronts whose focal length depends on the rotation. We use a combination of a nanopillar and a phase plate as the unit cell structure working at a wavelength of 1500 nm. Our design holds promise for a range of applications such as zoom lenses, microscopy, and augmented reality.

 
more » « less
NSF-PAR ID:
10277960
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
46
Issue:
15
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 3548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state. We developed a design methodology and created libraries of meta-units—building blocks of metasurfaces—with complex cross-sectional geometries to provide diverse phase dispersions (phase as a function of wavelength), which is crucial for creating broadband achromatic metalenses. We elucidated the fundamental limitations of achromatic metalens performance by deriving mathematical equations that govern the tradeoffs between phase dispersion and achievable lens parameters, including the lens diameter, numerical aperture (NA), and bandwidth of achromatic operation. We experimentally demonstrated several dielectric achromatic metalenses reaching the fundamental limitations. These metalenses work in the transmission mode with polarization-independent focusing efficiencies up to 50% and continuously provide a near-constant focal length overλ = 1200–1650 nm. These unprecedented properties represent a major advance compared to the state of the art and a major step toward practical implementations of metalenses.

     
    more » « less
  2. Abstract

    Miniature lenses with a tunable focus are essential components for many modern applications involving compact optical systems. While several tunable lenses have been reported with various tuning mechanisms, they often face challenges with respect to power consumption, tuning speed, fabrication cost, or production scalability. In this work, we have adapted the mechanism of an Alvarez lens – a varifocal composite lens in which lateral shifts of two optical elements with cubic phase surfaces give rise to a change in the optical power – to construct a miniature, microelectromechanical system (MEMS)-actuated metasurface Alvarez lens. Implementation based on an electrostatic MEMS generates fast and controllable actuation with low power consumption. The utilization of metasurfaces – ultrathin and subwavelength-patterned diffractive optics – as optical elements greatly reduces the device volume compared to systems using conventional freeform lenses. The entire MEMS Alvarez metalens is fully compatible with modern semiconductor fabrication technologies, granting it the potential to be mass-produced at a low unit cost. In the reported prototype operating at 1550 nm wavelength, a total uniaxial displacement of 6.3 µm was achieved in the Alvarez metalens with a direct-current (DC) voltage application up to 20 V, which modulated the focal position within a total tuning range of 68 µm, producing more than an order of magnitude change in the focal length and a 1460-diopter change in the optical power. The MEMS Alvarez metalens has a robust design that can potentially generate a much larger tuning range without substantially increasing the device volume or energy consumption, making it desirable for a wide range of imaging and display applications.

     
    more » « less
  3. Abstract

    Optical metasurfaces have been widely investigated in recent years as a means to tailor the wavefronts of externally incident light for passive device applications. At the same time, their use in active optoelectronic devices such as light emitters is far less established. This work explores their ability to control the radiation properties of a nearby continuous ensemble of randomly oriented incoherent dipole sources via near‐field interactions. Specifically, a film of colloidal quantum dots is deposited on a plasmonic metasurface consisting of a 1D array of metallic nanoantennas on a metal film. The array is designed to introduce a linear phase profile upon reflection, and a bi‐periodic nanoparticle arrangement is introduced to ensure adequate sampling of the desired phase gradient. Highly directional radiation patterns are correspondingly obtained from the quantum dots at an enhanced emission rate. The underlying radiation mechanism involves the near‐field excitation of surface plasmon polaritons at the metal film, and their selective diffractive scattering by the metasurface into well‐collimated beams along predetermined geometrically tunable directions. These results underscore the distinctive ability of metasurfaces to control radiation properties directly at the source level, which is technologically significant for the continued miniaturization and large‐scale integration of optoelectronic devices.

     
    more » « less
  4. Tunable piezoelectric metasurfaces have been proposed as a means of adaptively steering incident elastic waves for various applications in vibration mitigation and control. Bonding piezoelectric material to thin structures introduces electromechanical coupling, enabling structural dynamics to be altered via tunable electric shunts connected across each unit cell. For example, by carefully calibrating the inductive shunts, it is possible to implement the discrete phase shifts necessary for gradient-based waveguiding behaviors. However, experimental validations of localized phase shifting are challenging due to the narrow bandgap of local resonators, resulting in poor transmission of incident waves and high sensitivity to transient noise. These factors, in combination with the difficulties in experimental circuitry synthesis, can lead to significant variability of data acquired within the bandgap operating region. This paper presents a systematic approach for extracting localized phase shifts by taking advantage of the inherent correlation between the incident and transmitted wavefronts. During this procedure, matched filtering greatly reduces noise in the transmitted signal when operating in or near bandgap frequencies. Experimental results demonstrate phase shifts as large as −170° within the locally resonant bandgap, with an average 28% reduction in error relative to a direct time domain measurement of phase, enabling effective comparison of the dispersive behavior with corresponding analytical and finite element models. In addition to demonstrating the tunable waveguide characteristics of a piezoelectric metasurface, this technique can easily be extended to validate localized phase shifting of other elastic waveguiding metasurfaces.

     
    more » « less
  5. Abstract

    Metasurfaces are planar structures that can offer unprecedented freedoms to manipulate electromagnetic wavefronts at deep‐subwavelength scale. The wavelength‐dependent behavior of the metasurface could severely reduce the design freedom. Besides, realizing high‐efficiency metasurfaces with a simple design procedure and easy fabrication is of great interest. Here, a novel approach to design highly efficient meta‐atoms that can achieve full 2π phase coverage at two wavelengths independently in the transmission mode is proposed. More specifically, a bilayer meta‐atom is designed to operate at two wavelengths, the cross‐polarized transmission efficiencies of which reach more than 70% at both wavelengths. The 2π phase modulations at two wavelengths under the circularly polarized incidence can be achieved independently by varying the orientations of the two resonators constructing the meta‐atom based on Pancharatnam–Berry phase principle. As proof‐of‐concept demonstrations, three dual‐wavelength meta‐devices employing the proposed meta‐atom are numerically investigated and experimentally verified, including two metalenses (1D and 2D) with the same focusing length and a vortex beam generator carrying different orbital angular momentum modes at two operation wavelengths. Both the simulation and experimental results satisfy the design goals, which validate the proposed approach.

     
    more » « less