Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors:
- NSF-PAR ID:
- 10278128
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Biogeochemistry
- Volume:
- 154
- Issue:
- 2
- ISSN:
- 0168-2563
- Page Range / eLocation ID:
- 255 to 292
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract human activities ,geology ,flowpaths ,climate , andtime . (1)Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2)Geology drives rates of erosion, weathering, ion exchange, and acidification‐alkalinization. (3)Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4)Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5)Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems‐level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure. -
Abstract Increasing trends in base cations, pH, and salinity of freshwaters have been documented in US streams over 50 years. These patterns, collectively known as freshwater salinization syndrome (FSS), are driven by multiple processes, including applications of road salt and human-accelerated weathering of impervious surfaces, reductions in acid rain, and other anthropogenic legacies of change. FSS mobilizes chemical cocktails of distinct elemental mixtures via ion exchange, and other biogeochemical processes. We analyzed impacts of FSS on streamwater chemistry across five urban watersheds in the Baltimore-Washington, USA metropolitan region. Through combined grab-sampling and high-frequency monitoring by USGS sensors, regression relationships were developed among specific conductance and major ion and trace metal concentrations. These linear relationships were statistically significant in most of the urban streams (e.g.
R 2= 0.62 and 0.43 for Mn and Cu, respectively), and showed that specific conductance could be used as a proxy to predict concentrations of major ions and trace metals. Major ions and trace metals analyzed via linear regression and principal component analysis showed co-mobilization (i.e. correlations among combinations of specific conductance (SC), Mn, Cu, Sr2+, and all base cations during certain times of year and hydrologic conditions). Co-mobilization of metals and base cations was strongest during peak snow events but could continue over 24 h after SC peaked, suggesting ongoing cation exchange in soils and stream sediments. Mn and Cu concentrations predicted from SC as a proxy indicated acceptable goodness of fit for predictedvs. observed values (Nash–Sutcliffe efficiency > 0.28). Metals concentrations remained elevated for days after SC decreased following snowstorms, suggesting lag times and continued mobilization after road salt use. High-frequency sensor monitoring and proxies associated with FSS may help better predict contaminant pulses and contaminant exceedances in response to salinization and impacts on aquatic life, infrastructure, and drinking water. -
Freshwater salinization syndrome (FSS) refers to the suite of interactive effects of salt ions on degradation of physical, biological,and social systems. Best management practices (BMPs), which are methods to effectively reduce runoff and nonpoint source pollution (stormwater, nutrients, sediments), do not typically consider management of salt pollution. We investigate impacts of FSS on mobilization of salts, nutrients, and metals in urban streams and storm water BMPs by analyzing original data on concentrations and fluxes of salts, nutrients, and metals from 7 urban watersheds in the Mid-Atlantic USA and synthesizing literature data. We also explore future critical research needs through a survey of practitioners and scientists. Our original data show 1) sharp pulses in concentrations of salt ions and metals in urban streams directly following both road salt events and stream restoration construction (e.g.,similar to the way concentrations increase during other soil disturbance activities); 2) sharp declines in pH (acidification) in response to road salt applications because of mobilization of H+ from soil exchange sites by Na+; 3) sharp increases inorganic matter from microbial and algal sources (based on fluorescence spectroscopy) in response to road salt applications, likely because of lysing cells and changes insolubility; 4) substantial retention (~30–40%) of Na+ in stormwater BMP sediments and floodplains in response to salinization; 5) increased ion exchange and mobilization of diverse salt ions (Na+, Ca2+, K+, Mg2+), nutrients(N, P), and trace metals(Cu, Sr) from stormwater BMPs and restored streams in response to FSS; 6) downstream increasing loads ofCl–, SO42–, Br–, F–,andI–along flowpaths through urbanstreams and P release from urban stormwater BMPs in response to salinization; and 7)a substantial annual reduction (>50%) in Na+concentrations in an urban stream when road salt applications were dramatically reduced, which suggests potential for ecosystem recovery. We compare our original results with published metrics of contaminant retention and release across a broad range of stormwater BMPs from North America and Europe.Overall, urban streams and stormwater BMPs consistently retain Na+ and Cl–but mobilize multiple contaminants based on salt types and salinity levels. Finally, we present our top 10 research questions regarding FSS impacts on urban streams and stormwater BMPs. Reducing diverse chemical cocktails of contaminants mobilized by freshwater salinization is a priority for effectively and holistically restoring urban waters.more » « less
-
Freshwater Salinization Syndrome (FSS) refers to the suite of physical, biological, and chemical impacts of salt ions on the degradation of natural, engineered, and social systems. Impacts of FSS on mobilization of chemical cocktails has been documented in streams and groundwater, but little research has focused on the effects of FSS on stormwater best management practices (BMPs) such as: constructed wetlands, bioswales, ponds, and bioretention. However emerging research suggests that stormwater BMPs may be both sources and sinks of contaminants, shifting seasonally with road salt applications. We conducted lab experiments to investigate this premise; replicate water and soil samples were collected from four distinct stormwater feature types (bioretention, bioswale, constructed wetlands and retention ponds) and were used in salt incubation experiments conducted under six different salinities with three different salts (NaCl, CaCl2, and MgCl2). Increased salt concentrations had profound effects on major and trace element mobilization, with all three salts showing significant positive relationships across nearly all elements analyzed. Across all sites, mean salt retention was 34%, 28%, and 26% for Na+, Mg2+and Ca2+respectively, and there were significant differences among stormwater BMPs. Salt type showed preferential mobilization of certain elements. NaCl mobilized Cu, a potent toxicant to aquatic biota, at rates over an order of magnitude greater than both CaCl2and MgCl2. Stormwater BMP type also had a significant effect on elemental mobilization, with ponds mobilizing significantly more Mn than other sites. However, salt concentration and salt type consistently had significant effects on mean concentrations of elements mobilized across all stormwater BMPs (
p < 0.05), suggesting that processes such as ion exchange mobilize metals mobilize metals and salt ions regardless of BMP type. Our results suggest that decisions regarding the amounts and types of salts used as deicers can have significant effects on reducing contaminant mobilization to freshwater ecosystems. -
Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed “chemical cocktails”, in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (
i.e. , road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e., permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g., Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.