skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mycoplasma agassizii, an opportunistic pathogen of tortoises, shows very little genetic variation across the Mojave and Sonoran Deserts
Mycoplasma agassizii is a common cause of upper respiratory tract disease in Mojave desert tortoises ( Gopherus agassizii ). So far, only two strains of this bacterium have been sequenced, and very little is known about its patterns of genetic diversity. Understanding genetic variability of this pathogen is essential to implement conservation programs for their threatened, long-lived hosts. We used next generation sequencing to explore the genomic diversity of 86 cultured samples of M . agassizii collected from mostly healthy Mojave and Sonoran desert tortoises in 2011 and 2012. All samples with enough sequencing coverage exhibited a higher similarity to M . agassizii strain PS6 T (collected in Las Vegas Valley, Nevada) than to strain 723 (collected in Sanibel Island, Florida). All eight genomes with a sequencing coverage over 2x were subjected to multiple analyses to detect single-nucleotide polymorphisms (SNPs). Strikingly, even though we detected 1373 SNPs between strains PS6 T and 723, we did not detect any SNP between PS6 T and our eight samples. Our whole genome analyses reveal that M . agassizii strain PS6 T may be present across a wide geographic extent in healthy Mojave and Sonoran desert tortoises.  more » « less
Award ID(s):
1818288
PAR ID:
10278208
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Kuo, Chih-Horng
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
2
ISSN:
1932-6203
Page Range / eLocation ID:
e0245895
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rokas, A (Ed.)
    Abstract The gray short-tailed opossum (Monodelphis domestica) is an established laboratory-bred marsupial model for biomedical research. It is a critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs ancestral states of genomic/epigenomic characteristics for eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial, we examined 79 individuals from eight established laboratory strains. Double digest restriction site-associated DNA sequencing and whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity, and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient F > 0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate offspring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive manipulation and CRISPR/Cas9 techniques for Monodelphis domestica, the existence of distinctive inbred strains will enable genome editing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research. 
    more » « less
  2. Abstract Despite the devastating impact of the lionfish ( Pterois volitans ) invasion on NW Atlantic ecosystems, little genetic information about the invasion process is available. We applied Genotyping by Sequencing techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to understand genetic trends relevant to the lionfish’s long-term persistence. We found no significant differences in genetic structure or diversity between the two areas (F ST p- values > 0.01, and t-test p- values > 0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These findings suggest rapid genetic changes over space and time during the invasion, resulting in one panmictic population with no signs of divergence between areas due to local adaptation. 
    more » « less
  3. Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD 50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28) and Hide Powder Azure proteolytic analysis (n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present. 
    more » « less
  4. Aim: To review the histories of the Colorado River and North American monsoon system to ascertain their effects on the genetic divergence of desert‐adapted animals. Location: Lower Colorado River region, including Mojave and Sonoran deserts, United States. Methods: We synthesized recent geological literature to summarize initiation phases of lower Colorado River evolution, their discrepancies, and potential for post‐vicariance dispersal of animals across the river. We simulated data under geological models and performed a meta‐analysis of published and unpublished genetic data including population diversity metrics, relatedness and historical migration rates to assess alternative divergence hypotheses. Results: The two models for arrival of the Colorado River into the Gulf of California impose east‐west divergence ages of 5.3 and 4.8 Ma, respectively. We found quantifiable river‐associated differentiation in the lower Colorado River region in reptiles, arachnids and mammals relative to flying insects. However, topological statistics, historical migration rates and cross‐river extralimital populations suggest that the river should be considered a leaky barrier that filters, rather than prevents, gene flow. Most markers violated neutrality tests. Differential adaptation to monsoon‐based precipitation differences may contribute to divergence between Mojave and Sonoran populations and should be tested. Main Conclusions: Rivers are dynamic features that can both limit and facilitate gene flow through time, the impacts of which are mitigated by species‐specific life history and dispersal traits. The Southwest is a geo‐climatically complex region with the potential to produce pseudocongruent patterns of genetic divergence, offering a good setting to evaluate intermediate levels of geological‐biological (geobiological) complexity. 
    more » « less
  5. Abstract Understanding how genetic diversity is distributed across spatiotemporal scales in species of conservation or management concern is critical for identifying large‐scale mechanisms affecting local conservation status and implementing large‐scale biodiversity monitoring programmes. However, cross‐scale surveys of genetic diversity are often impractical within single studies, and combining datasets to increase spatiotemporal coverage is frequently impeded by using different sets of molecular markers. Recently developed molecular tools make surveys based on standardized single‐nucleotide polymorphism (SNP) panels more feasible than ever, but require existing genomic information. Here, we conduct the first survey of genome‐wide SNPs across the native range of brook trout (Salvelinus fontinalis), a cold‐adapted species that has been the focus of considerable conservation and management effort across eastern North America. Our dataset can be leveraged to easily design SNP panels that allow datasets to be combined for large‐scale analyses. We performed restriction site‐associated DNA sequencing for wild brook trout from 82 locations spanning much of the native range and domestic brook trout from 24 hatchery strains used in stocking efforts. We identified over 24,000 SNPs distributed throughout the brook trout genome. We explored the ability of these SNPs to resolve relationships across spatial scales, including population structure and hatchery admixture. Our dataset captures a wide spectrum of genetic diversity in native brook trout, offering a valuable resource for developing SNP panels. We highlight potential applications of this resource with the goal of increasing the integration of genomic information into decision‐making for brook trout and other species of conservation or management concern. 
    more » « less