skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Abstract. The acceleration of urbanization requires sustainable, adaptive management strategies for land and water use in cities. Although the effects of buildings and sealed surfaces on urban runoff generation and local climate are well known, much less is known about the role of water partitioning in urban green spaces. In particular, little is quantitatively known about how different vegetation types of urban green spaces (lawns, parks, woodland, etc.) regulate partitioning of precipitation into evaporation, transpiration and groundwater recharge and how this partitioning is affected by sealed surfaces. Here, we integrated field observations with advanced, isotope-based ecohydrological modelling at a plot-scale site in Berlin, Germany. Soil moisture and sap flow, together with stable isotopes in precipitation, soil water and groundwater recharge, were measured over the course of one growing season under three generic types of urban green space: trees, shrub and grass. Additionally, an eddy flux tower at the site continuously collected hydroclimate data. These data have been used as input and for calibration of the process-based ecohydrological model EcH2O-iso. The model tracks stable isotope ratios and water ages in various stores (e.g. soils and groundwater) and fluxes (evaporation, transpiration and recharge). Green water fluxes in evapotranspiration increased in the order shrub (381±1mm)  more » « less
Award ID(s):
1633831
PAR ID:
10278906
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
25
Issue:
6
ISSN:
1607-7938
Page Range / eLocation ID:
3635 to 3652
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Quantifying how vegetation mediates water partitioning at different spatialand temporal scales in complex, managed catchments is fundamental forlong-term sustainable land and water management. Estimations fromecohydrological models conceptualising how vegetation regulates theinterrelationships between evapotranspiration losses, catchment water storage dynamics, and recharge and runoff fluxes are needed to assess water availability for a range of ecosystem services and evaluate how these might change under increasing extreme events, such as droughts. Currently, the feedback mechanisms between water and mosaics of different vegetation and land cover are not well understood across spatial scales, and the effects of different scaleson the skill of ecohydrological models needs to be clarified. We used thetracer-aided ecohydrological model EcH2O-iso in an intensively monitored 66 km2 mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions (250, 500, 750, and 1000 m). This used a fusion of field (including precipitation, soil water, groundwater, and stream isotopes) and remote sensing data in the calibration. Multicriteria calibration across the catchment at each resolution revealed some differences in the estimation of fluxes, storages, and water ages. In general, model sensitivity decreased and uncertainty increased with coarser model resolutions. Larger grids were unable to replicate observed streamflow and distributed isotope dynamics in the way smaller pixels could. However, using isotope data in the calibration still helped constrain the estimation of fluxes, storage, and water ages at coarserresolutions. Despite using the same data and parameterisation for calibration at different grid resolutions, the modelled proportion of fluxes differed slightly at each resolution, with coarse models simulating higher evapotranspiration, lower relative transpiration, increased overland flow, and slower groundwater movement. Although the coarser resolutions also revealed higher uncertainty and lower overall model performance, the overall results were broadly similar. The study shows that tracers provide effective calibration constraints on larger resolution ecohydrological modelling and help us understand the influence of grid resolution on the simulation of vegetation–soil interactions. This is essential in interpreting associated uncertainty in estimating land use influence on large-scale “blue” (ground and surface water) and “green” (vegetation and evaporated water) fluxes, particularly for future environmental change. 
    more » « less
  2. Abstract. Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH2O-iso, for cold regions with the explicit conceptualization of dynamic soil freeze–thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criterion calibration using discharge, stream isotopes and soil moisture in three nested catchments. We utilized the model's incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically depleted pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing front throughout the winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum freeze depth of 0.25 m below forest vegetation. Water ages of evaporation and transpiration reflect the influence of snowmelt inputs, with a high proclivity of old water (pre-winter storage) at the beginning of the growing season and a mix of snowmelt and precipitation (young water) toward the end of the summer. Soil frost had an early season influence of the transpiration water ages, with water pre-dating the snowpack mainly sustaining vegetation at the start of the growing season. Given the long-term expected change in the energy balance of northern climates, the approach presented provides a framework for quantifying the interactions of ecohydrological fluxes and waters stored in the soil and understanding how these may be impacted in future. 
    more » « less
  3. Abstract Quantitative estimations of ecohydrological water partitioning into evaporation and transpiration remains mostly based on plot‐scale investigations that use well‐instrumented, small‐scale experimental catchments in temperate regions. Here, we attempted to upscale and adapt the conceptual tracer‐aided ecohydrology model STARRtropics to simulate water partitioning, tracer, and storage dynamics over daily time steps and a 1‐km grid larger‐scale (2565 km2) in a sparsely instrumented tropical catchment in Costa Rica. The model was driven by bias‐corrected regional climate model outputs and was simultaneously calibrated against daily discharge observations from 2 to 30 years at four discharge gauging stations and a 1‐year, monthly streamwater isotope record of 46 streams. The overall model performance for the best discharge simulations ranged in KGE values from 0.4 to 0.6 and correlation coefficients for streamflow isotopes from 0.3 to 0.45. More importantly, independent model‐derived transpiration estimates, point‐scale residence time estimates, and measured groundwater isotopes showed reasonable model performance and simulated spatial and temporal patterns pointing towards an overall model realism at the catchment scale over reduced performance in the headwaters. The simulated catchment system was dominated by low‐seasonality and high precipitation inputs and a marked topographical gradient. Climatic drivers overrode smaller, landcover‐dependent transpiration fluxes giving a seemingly homogeneous rainfall‐runoff dominance likely related to model input bias of rainfall isotopes, oversimplistic Potential Evapotranspiration (PET) estimates and averaged Leaf Area Index (LAI). Topographic influences resulted in more dynamic water and tracer fluxes in the headwaters that averaged further downstream at aggregated catchment scales. Modelled headwaters showed greater storage capacity by nearly an order of magnitude compared to the lowlands, which also favoured slightly longer residence times (>250 days) compared to superficially well‐connected groundwater contributing to shorter streamflow residence times (<150 days) in the lowlands. Our findings confirm that tracer‐aided ecohydrological modelling, even in the data‐scarce Tropics, can help gain a first, but crucial approximation of spatio‐temporal dynamics of how water is partitioned, stored and transported beyond the experimental catchment scale of only a few km2
    more » « less
  4. Abstract Land surface models (LSMs) play a crucial role in elucidating water and carbon cycles by simulating processes such as plant transpiration and evaporation from bare soil, yet calibration often relies on comparing LSM outputs of landscape total evapotranspiration (ET) and discharge with measured bulk fluxes. Discrepancies in partitioning into component fluxes predicted by various LSMs have been noted, prompting the need for improved evaluation methods. Stable water isotopes serve as effective tracers of component hydrologic fluxes, but data and model integration challenges have hindered their widespread application. Leveraging National Ecological Observation Network measurements of water isotope ratios at 16 US sites over 3 years combined with LSM‐modeled fluxes, we employed an isotope‐enabled mass balance framework to simulateETisotope values (δET) within three operational LSMs (Mosaic, Noah, and VIC) to evaluate their partitioning. Models simulatingδETvalues consistent with observations were deemed more reflective of water cycling in these ecosystems. Mosaic exhibited the best overall performance (Kling‐Gupta Efficiency of 0.28). For both Mosaic and Noah there were robust correlations between bare soil evaporation fraction and error (negative) as well as transpiration fraction and error (positive). We found the point at which errors are smallest (x‐intercept of the multi‐site regression) is at a higher transpiration fraction than is currently specified in the models. Which means that transpiration fraction is underestimated on average. Stable isotope tracers offer an additional tool for model evaluation and identifying areas for improvement, potentially enhancing LSM simulations and our understanding of land‐surface hydrologic processes. 
    more » « less
  5. Abstract Hydraulic redistribution is the transport of water from wet to dry soil layers, upward or downward, through plant roots. Often in savanna and woodland ecosystems, deep‐rooted trees, and shallow‐rooted grasses coexist. The degree to which these different species compete for or share soil‐water derived from precipitation or groundwater, as well as how these interactions are altered by hydraulic redistribution, is unknown. We use a multilayer canopy model and field observations to examine how the presence of deep, but tree‐root accessible, groundwater impacts seasonal patterns of hydraulic redistribution, and interaction between coexisting vegetation species in a semiarid riparian woodland (US‐CMW). Based on the simulation, trees absorb moisture at the water table (∼10 m depth) and release it in the shallow soil depth (0–3 m) during the dry pre‐monsoon season. We observed the occurrence of a new convergent hydraulic redistribution pattern during the monsoon season, where moisture is transported from both the near‐surface (0–0.5 m) and the water table to intermediate soil layers (1–5 m) through tree roots. We found that hydraulic redistribution demonstrates a growth facilitation effect at this site, supporting 49% of growing season tree transpiration and 14% of the grass transpiration. Compared to a similarly structured upland savanna without accessible groundwater, the riparian site shows an increased amount of hydraulically redistributed water and more facilitative water use between coexisting grasses and trees. These results shed light on the linkage between accessible groundwater and the role of hydraulic redistribution on the interaction between deep‐rooted and shallow‐rooted vegetation. 
    more » « less