skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Live fast, die young: GMC lifetimes in the FIRE cosmological simulations of Milky Way mass galaxies
ABSTRACT We present the first measurement of the lifetimes of giant molecular clouds (GMCs) in cosmological simulations at z = 0, using the Latte suite of FIRE-2 simulations of Milky Way (MW) mass galaxies. We track GMCs with total gas mass ≳105 M⊙ at high spatial (∼1 pc), mass (7100 M⊙), and temporal (1 Myr) resolution. Our simulated GMCs are consistent with the distribution of masses for massive GMCs in the MW and nearby galaxies. We find GMC lifetimes of 5–7 Myr, or 1–2 freefall times, on average, with less than 2 per cent of clouds living longer than 20 Myr. We find decreasing GMC lifetimes with increasing virial parameter, and weakly increasing GMC lifetimes with galactocentric radius, implying that environment affects the evolutionary cycle of GMCs. However, our GMC lifetimes show no systematic dependence on GMC mass or amount of star formation. These results are broadly consistent with inferences from the literature and provide an initial investigation into ultimately understanding the physical processes that govern GMC lifetimes in a cosmological setting.  more » « less
Award ID(s):
1715216
PAR ID:
10278907
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
497
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3993 to 3999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Recent cosmological hydrodynamical simulations are able to reproduce numerous statistical properties of galaxies that are consistent with observational data. Yet, the adopted subgrid models strongly affect the simulation outcomes, limiting the predictive power of these simulations. In this work, we perform a suite of isolated galactic disc simulations under the SMUGGLE framework and investigate how different subgrid models affect the properties of giant molecular clouds (GMCs). We employ astrodendro, a hierarchical clump-finding algorithm, to identify GMCs in the simulations. We find that different choices of subgrid star formation efficiency, ϵff, and stellar feedback channels, yield dramatically different mass and spatial distributions for the GMC populations. Without feedback, the mass function of GMCs has a shallower power-law slope and extends to higher mass ranges compared to runs with feedback. Moreover, higher ϵff results in faster molecular gas consumption and steeper mass function slopes. Feedback also suppresses power in the two-point correlation function (TPCF) of the spatial distribution of GMCs. Specifically, radiative feedback strongly reduces the TPCF on scales below 0.2 kpc, while supernova feedback reduces power on scales above 0.2 kpc. Finally, runs with higher ϵff exhibit a higher TPCF than runs with lower ϵff, because the dense gas is depleted more efficiently, thereby facilitating the formation of well-structured supernova bubbles. We argue that comparing simulated and observed GMC populations can help better constrain subgrid models in the next generation of galaxy formation simulations. 
    more » « less
  2. ABSTRACT It remains a major challenge to derive a theory of cloud-scale ($$\lesssim100$$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically $$10\!-\!30\,{\rm Myr}$$, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $$\Sigma _{\rm H_2}\ge 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $$\Sigma _{\rm H_2}\le 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just $$1\!-\!5\,{\rm Myr}$$ once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H ii regions are the fundamental units undergoing these lifecycles, with mean separations of $$100\!-\!300\,{{\rm pc}}$$ in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles. 
    more » « less
  3. ABSTRACT We use young clusters and giant molecular clouds (GMCs) in the galaxies M33 and M31 to constrain temporal and spatial scales in the star formation process. In M33, we compare the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER) catalogue of 1214 clusters with ages measured via colour–magnitude diagram (CMD) fitting to 444 GMCs identified from a new 35 pc resolution Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(2–1) survey. In M31, we compare the Panchromatic Hubble Andromeda Treasury (PHAT) catalogue of 1249 clusters to 251 GMCs measured from a Combined Array for Research in Millimeter-wave Astronomy (CARMA) 12CO(1–0) survey with 20 pc resolution. Through two-point correlation analysis, we find that young clusters have a high probability of being near other young clusters, but correlation between GMCs is suppressed by the cloud identification algorithm. By comparing the positions, we find that younger clusters are closer to GMCs than older clusters. Through cross-correlation analysis of the M33 cluster data, we find that clusters are statistically associated when they are ≤10 Myr old. Utilizing the high precision ages of the clusters, we find that clusters older than ≈18 Myr are uncorrelated with the molecular interstellar medium (ISM). Using the spatial coincidence of the youngest clusters and GMCs in M33, we estimate that clusters spend ≈4–6 Myr inside their parent GMC. Through similar analysis, we find that the GMCs in M33 have a total lifetime of ≈11–15 Myr. We also develop a drift model and show that the above correlations can be explained if the clusters in M33 have a 5–10 km s−1 velocity dispersion relative to the molecular ISM. 
    more » « less
  4. Abstract The properties of young massive clusters (YMCs) are key to understanding the star formation mechanism in starburst systems, especially mergers. We present Atacama Large Millimeter/submillimeter Array high-resolution (∼10 pc) continuum (100 and 345 GHz) data of YMCs in the overlap region of the Antennae galaxy. We identify six sources in the overlap region, including two sources that lie in the same giant molecular cloud (GMC). These YMCs correspond well with radio sources in lower-resolution continuum (100 and 220 GHz) images at GMC scales (∼60 pc). We find most of these YMCs are bound clusters through virial analysis. We estimate their ages to be ∼1 Myr and that they are either embedded or just beginning to emerge from their parent cloud. We also compare each radio source with a Pa β source, and find they have consistent total ionizing photon numbers, which indicates they are tracing the same physical source. By comparing the free–free emission at ∼10 pc scale and ∼60 pc scale, we find that ∼50% of the free–free emission in GMCs actually comes from these YMCs. This indicates that roughly half of the stars in massive GMCs are formed in bound clusters. We further explore the mass correlation between YMCs and GMCs in the Antennae and find it generally agrees with the predictions of the star cluster simulations. The most massive YMC has a stellar mass that is 1%–5% of its host GMC mass. 
    more » « less
  5. ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $$10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$$10^{10}\, \mathrm{ M}_{\odot }$$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $$\rm [Z/H]$$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies. 
    more » « less