skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer
Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually into SSA are unclear. It is hypothesized that saccharides cooperatively adsorb to other insoluble organic matter at the air/sea interface, known as the sea surface microlayer (SSML). Using a combination of surface-sensitive infrared reflection-absorption spectroscopy and all-atom molecular dynamics simulations, we demonstrate that the marine-relevant, anionic polysaccharide alginate co-adsorbs to an insoluble palmitic acid monolayer via divalent cationic bridging interactions. Ca2+ induces the greatest extent of alginate co-adsorption to the monolayer, evidenced by the ~30% increase in surface coverage, whereas Mg2+ only facilitates one-third the extent of co-adsorption at seawater-relevant cation concentrations due to its strong hydration propensity. Na+ cations alone do not facilitate alginate co-adsorption, and palmitic acid protonation hinders the formation of divalent cationic bridges between the palmitate and alginate carboxylate moieties. Alginate co-adsorption is largely confined to the interfacial region beneath the monolayer headgroups, so surface pressure, and thus monolayer surface coverage, only changes the amount of alginate co-adsorption by less than 5%. Our results provide physical and molecular characterization of a potentially significant polysaccharide enrichment mechanism within the SSML.  more » « less
Award ID(s):
1801971
PAR ID:
10278914
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
ISSN:
1463-9076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Field measurements have shown that sub-micrometer sea spray aerosol (SSA) is significantly enriched in organic material, of which a large fraction has been attributed to soluble saccharides. Existing mechanistic models of SSA production struggle to replicate the observed enhancement of soluble organic material. Here, we assess the role for divalent cation mediated co-adsorption of charged surfactants and saccharides in the enrichment of soluble organic material in SSA. Using measurements of particle supersaturated hygroscopicity, we calculate organic volume fractions for molecular mimics of SSA generated from a Marine Aerosol Reference Tank. Large enhancements in SSA organic volume fractions (Xorg > 0.2) were observed for 50 nm dry diameter (dp) particles in experiments where cooperative ionic interactions were favorable (e.g., palmitic acid, Mg2+, and glucuronic acid) at seawater total organic carbon concentrations (<1.15 mM C) and ocean pH. Significantly smaller SSA organic volume fractions (Xorg < 1.5 × 10−3) were derived from direct measurements of soluble saccharide concentrations in collected SSA with dry diameters <250 nm, suggesting that organic enrichment is strongly size dependent. The results presented here indicate that divalent cation mediated co-adsorption of soluble organics to insoluble surfactants at the ocean surface may contribute to the enrichment of soluble saccharides in SSA. The extent to which this mechanism explains the observed enhancement of saccharides in nascent SSA depends strongly on the concentration, speciation, and charge of surfactants and saccharides in the sea surface microlayer. 
    more » « less
  2. Environmental contextSaccharides contribute substantially to dissolved organic carbon in the ocean and are enriched at the ocean surface. In this study, we demonstrate that saccharides are more enriched in persistent whitecap foam compared to the sea surface. The maturation of bubbles at the air–water interface is thus expected to enhance the enrichment of organic matter at the ocean surface and ultimately in the sea spray aerosol that forms when bubbles burst at the ocean surface. RationaleOrganic matter accumulates at the ocean surface. Herein, we provide the first quantitative assessment of the enrichment of dissolved saccharides in persistent whitecap foam and compare this enrichment to the sea surface microlayer (SSML) during a 9 day mesocosm experiment involving a phytoplankton bloom generated in a Marine Aerosol Reference Tank (MART). MethodologyFree monosaccharides were quantified directly, total saccharides were determined following mild acid hydrolysis and the oligo/polysaccharide component was determined as the difference between total and free monosaccharides. ResultsTotal saccharides contributed a significant fraction of dissolved organic carbon (DOC), accounting for 13% of DOC in seawater, 27% in SSML and 31% in foam. Median enrichment factors (EFs), calculated as the ratio of the concentrations of saccharides relative to sodium in SSML or foam to that of seawater, ranged from 1.7 to 6.4 in SSML and 2.1–12.1 in foam. Based on median EFs, xylitol, mannitol, glucose, galactose, mannose, xylose, fucose, rhamnose and ribose were more enriched in foam than SSML. DiscussionThe greatest EFs for saccharides coincided with high chlorophyll levels, indicating increasing ocean surface enrichment of saccharides during phytoplankton blooms. Higher enrichments of organic matter in sea foam over the SSML indicate that surface active organic compounds become increasingly enriched on persistent bubble film surfaces. These findings help to explain how marine organic matter becomes highly enriched in sea spray aerosol that is generated by bursting bubbles at the ocean surface. 
    more » « less
  3. Sea spray aerosol (SSA) is highly enriched in marine-derived organic compounds during seasons of high biological productivity, and saturated fatty acids comprise one of the most abundant classes of molecules. Fatty acids and other organic compounds form a film on SSA surfaces, and SSA particle surface-area-to-volume ratios are altered during aging in the marine boundary layer (MBL). To understand SSA surface organization and its role during dynamic atmospheric conditions, an SSA proxy fatty acid film and its individual components stearic acid (SA), palmitic acid (PA), and myristic acid (MA) are studied separately using surface pressure–area ( Π − A ) isotherms and Brewster angle microscopy (BAM). The films were spread on an aqueous NaCl subphase at pH 8.2, 5.6, and 2.0 to mimic nascent to aged SSA aqueous core composition in the MBL, respectively. We show that the individual fatty acid behavior differs from that of the SSA proxy film, and at nascent SSA pH the mixture yields a monolayer with intermediate rigidity that folds upon film compression to the collapse state. Acidification causes the SSA proxy film to become more rigid and form 3D nuclei. Our results reveal film morphology alterations, which are related to SSA reflectivity, throughout various stages of SSA aging and provide a better understanding of SSA impacts on climate. 
    more » « less
  4. Abstract Ocean waves transfer sea spray aerosol (SSA) to the atmosphere, and these SSA particles can be enriched in organic matter relative to salts compared to seawater ratios. A fundamental understanding of the factors controlling the transfer of biogenic organic matter from the ocean to the atmosphere remains elusive. Field studies that focus on understanding the connection between organic species in seawater and SSA are complicated by the numerous processes and sources affecting the composition of aerosols in the marine environment. Here, an isolated ocean–atmosphere system enables direct measurements of the sea–air transfer of different classes of biogenic organic matter over the course of two phytoplankton blooms. By measuring excitation–emission matrices of bulk seawater, the sea surface microlayer, and SSA, we investigate time series of the transfer of fluorescent species including chlorophyll-a, protein-like substances, and humic-like substances. Herein, we show the emergence of different molecular classes in SSA at specific times over the course of a phytoplankton bloom, suggesting that SSA chemical composition changes over time in response to changing ocean biological conditions. We compare the temporal behaviors for the transfer of each component, and discuss the factors contributing to differences in transfer between phases. 
    more » « less
  5. null (Ed.)
    The partitioning of medium-chain fatty acid surfactants such as nonanoic acid (NA) between the bulk phase and the air/water interface is of interest to a number of fields including marine and atmospheric chemistry. However, questions remain about the behavior of these molecules, the contributions of various relevant chemical equilibria, and the impact of pH, salt and bulk surfactant concentrations. In this study, the surface adsorption of nonanoic acid and its conjugate base is quantitatively investigated at various pH values, surfactant concentrations and the presence of salts. Surface concentrations of protonated and deprotonated species are dictated by surface-bulk equilibria which can be calculated from thermodynamic considerations. Notably we conclude that the surface dissociation constant of soluble surfactants cannot be directly obtained from these experimental measurements, however, we show that molecular dynamics (MD) simulation methods, such as free energy perturbation (FEP), can be used to calculate the surface acid dissociation constant relative to that in the bulk. These simulations show that nonanoic acid is less acidic at the surface compared to in the bulk solution with a p K a shift of 1.1 ± 0.6, yielding a predicted surface p K a of 5.9 ± 0.6. A thermodynamic cycle for nonanoic acid and its conjugate base between the air/water interface and the bulk phase can therefore be established. Furthermore, the effect of salts, namely NaCl, on the surface activity of protonated and deprotonated forms of nonanoic acid is also examined. Interestingly, salts cause both a decrease in the bulk p K a of nonanoic acid and a stabilization of both the protonated and deprotonated forms at the surface. Overall, these results suggest that the deprotonated medium-chain fatty acids under ocean conditions can also be present within the sea surface microlayer (SSML) present at the ocean/atmosphere interface due to the stabilization effect of the salts in the ocean. This allows the transfer of these species into sea spray aerosols (SSAs). More generally, we present a framework with which the behavior of partially soluble species at the air/water interface can be predicted from surface adsorption models and the surface p K a can be predicted from MD simulations. 
    more » « less