Simulating the impact of gas-wall partitioning on SOA formation using the explicit gas mechanism integrated with aqueous reactions containing electrolytes
- Award ID(s):
- 1923651
- PAR ID:
- 10278962
- Date Published:
- Journal Name:
- Science of The Total Environment
- Volume:
- 748
- Issue:
- C
- ISSN:
- 0048-9697
- Page Range / eLocation ID:
- 141360
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract In marine basins, gas hydrate systems are usually identified by a bottom simulating reflection (BSR) that parallels the seafloor and coincides with the base of the gas hydrate stability zone (GHSZ). We present a newly discovered gas hydrate system, Moby-Dick, located in the Ship Basin in the northern Gulf of Mexico. In the seismic data, we observe a channel-levee complex with a consistent phase reversal and a BSR extending over an area of ∼14.2 km2, strongly suggesting the presence of gas hydrate. In contrast to classical observations, the Moby-Dick BSR abnormally shoals 150 m toward the seafloor from west to east, which contradicts the northward-shallowing seafloor. We argue that the likely cause of the shoaling BSR is a gradually changing gas mix across the basin, with gas containing heavier hydrocarbons in the west transitioning to methane gas in the east. Our study indicates that such abnormal BSRs can be controlled by gradual changes in the gas mix influencing the shape of the GHSZ over kilometers on a basin scale.more » « less
-
Abstract Fast empirical models of the broad emission line region (BLR) are a powerful tool to interpret velocity-resolved reverberation mapping (RM) data, estimate the mass of the supermassive black holes, and gain insight into its geometry and kinematics. Much of the effort so far has been devoted to describing the emissivity of one emission line at a time. We present here an alternative approach aimed at describing the underlying BLR gas distribution, by exploiting simple numerical recipes to connect it with emissivity. This approach is a step toward describing multiple emission lines originating from the same gas and allows us to clarify some issues related to the interpretation of RM data. We illustrate this approach—implemented in the codeCARAMEL-gas—using three data sets covering the Hβemission line (Mrk 50, Mrk 1511, Arp 151) that have been modeled using the emissivity-based version of the code. As expected, we find differences in the parameters describing the BLR gas and emissivity distribution, but the emissivity-weighted lag measurements and all other model parameters including black hole mass and overall BLR morphology and kinematics are consistent with the previous measurements. We also model the Hαemission line for Arp 151 using both the gas- and emissivity-based BLR models. We find ionization stratification in the BLR with Hαarising at larger radii than Hβ, while all other model parameters are consistent within the uncertainties.more » « less
An official website of the United States government

