skip to main content


Title: Inside-out regulation of E-cadherin conformation and adhesion

Cadherin cell–cell adhesion proteins play key roles in tissue morphogenesis and wound healing. Cadherin ectodomains bind in two conformations, X-dimers and strand-swap dimers, with different adhesive properties. However, the mechanisms by which cells regulate ectodomain conformation are unknown. Cadherin intracellular regions associate with several actin-binding proteins including vinculin, which are believed to tune cell–cell adhesion by remodeling the actin cytoskeleton. Here, we show at the single-molecule level, that vinculin association with the cadherin cytoplasmic region allosterically converts weak X-dimers into strong strand-swap dimers and that this process is mediated by myosin II–dependent changes in cytoskeletal tension. We also show that in epithelial cells, ∼70% of apical cadherins exist as strand-swap dimers while the remaining form X-dimers, providing two cadherin pools with different adhesive properties. Our results demonstrate the inside-out regulation of cadherin conformation and establish a mechanistic role for vinculin in this process.

 
more » « less
NSF-PAR ID:
10279135
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
30
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2104090118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The cytoplasmic tails of classical cadherins form a multiprotein cadherin–catenin complex (CCC) that constitutes the major structural unit of adherens junctions (AJs). The CCC in AJs forms junctional clusters, “E clusters,” driven bycisandtransinteractions in the cadherin ectodomain and stabilized by α-catenin–actin interactions. Additional proteins are known to bind to the cytoplasmic region of the CCC. Here, we analyze how these CCC-associated proteins (CAPs) integrate into cadherin clusters and how they affect the clustering process. Using a cross-linking approach coupled with mass spectrometry, we found that the majority of CAPs, including the force-sensing protein vinculin, interact with CCCs outside of AJs. Accordingly, structural modeling shows that there is not enough space for CAPs the size of vinculin to integrate into E clusters. Using two CAPs, scribble and erbin, as examples, we provide evidence that these proteins form separate clusters, which we term “C clusters.” As proof of principle, we show, by using cadherin ectodomain monoclonal antibodies (mAbs), that mAb-bound E-cadherin forms separate clusters that undergotransinteractions. Taken together, our data suggest that, in addition to its role in cell–cell adhesion, CAP-driven CCC clustering serves to organize cytoplasmic proteins into distinct domains that may synchronize signaling networks of neighboring cells within tissues.

     
    more » « less
  2. E-cadherin plays a central role in cell-cell adhesion. The ectodomains of wild type cadherins form a crystalline- like two dimensional lattice in cell-cell interfaces mediated by both trans (apposed cell) and cis (same cell) interactions. In addition to these extracellular forces, adhesive strength is further regulated by cytosolic phenomena involving 𝛼 and 𝛽- catenin–mediated interactions between cadherin and the actin cytoskeleton. Cell-cell adhesion can be further strengthened under tension through mechanisms that have not been definitively characterized in molecular detail. Here we quantitatively determine the role of the cadherin ectodomain in mechanosensing. To this end, we devise an E-cadherin-coated emulsion system, in which droplet surface tension is balanced by protein binding strength to give rise to stable areas of adhesion. To reach the honeycomb/cohesive limit, an initial emulsion compression by centrifugation facilitates E-cadherin trans-binding, while a high protein surface concentration enables the cis-enhanced stabilization of the interface. We observe an abrupt concentration dependence on recruitment into adhesions of constant crystalline density, reminiscent of a first-order phase transition. Removing the lateral cis-interaction with a "cis mutant" shifts this transition to higher surface densities leading to denser, yet weaker adhesions. In both proteins, the stabilization of progressively larger areas of deformation can be rationalized by a stiffening catch-bond, whose strength increases with tension. This catch bond may well correspond to one that has been identified in the cadherin “X-dimer". 
    more » « less
  3. Yap, Alpha (Ed.)
    Vinculin is a protein found in both focal adhesions (FAs) and adherens junctions (AJs) which regulates actin connectivity to these structures. Many studies have demonstrated that mechanical perturbations of cells result in enhanced recruitment of vinculin to FAs and/or AJs. Likewise, many other studies have shown “cross-talk” between FAs and AJs. Vinculin itself has been suggested to be a probable regulator of this adhesion cross-talk. In this study we used MDCK as a model system of epithelia, developing cell lines in which vinculin recruitment was reduced or enhanced at AJs. Careful analysis of these cells revealed that perturbing vinculin recruitment to AJs resulted in a reduction of detectable FAs. Interestingly the cross-talk between these two structures was not due to a limited pool of vinculin, as increasing expression of vinculin did not rescue FA formation. Instead, we demonstrate that vinculin translocation between AJs and FAs is necessary for actin cytoskeleton rearrangements that occur during cell migration, which is necessary for large, well-formed FAs. Last, we show using a wound assay that collective cell migration is similarly hindered when vinculin recruitment is reduced or enhanced at AJs, highlighting that vinculin translocation between each compartment is necessary for efficient collective migration. 
    more » « less
  4. In epithelia, breakdown of tensional homeostasis is closely associated with E-cadherin dysfunction and disruption of tissue function and integrity. In this study, we investigated the effect of E-cadherin mutations affecting distinct protein domains on tensional homeostasis of gastric cancer cells. We used micropattern traction microscopy to measure temporal fluctuations of cellular traction forces in AGS cells transfected with the wild-type E-cadherin or with variants affecting the extracellular, the juxtamembrane, and the intracellular domains of the protein. We focused on the dynamic aspect of tensional homeostasis, namely the ability of cells to maintain a consistent level of tension, with low temporal variability around a set point. Cells were cultured on hydrogels micropatterned with different extracellular matrix (ECM) proteins to test whether the ECM adhesion impacts cell behavior. A combination of Fibronectin and Vitronectin was used as a substrate that promotes the adhesive ability of E-cadherin dysfunctional cells, whereas Collagen VI was used to test an unfavorable ECM condition. Our results showed that mutations affecting distinct E-cadherin domains influenced differently cell tensional homeostasis, and pinpointed the juxtamembrane and intracellular regions of E-cadherin as the key players in this process. Furthermore, Fibronectin and Vitronectin might modulate cancer cell behavior towards tensional homeostasis. 
    more » « less
  5. Desmosomes are cell–cell junctions that provide mechanical integrity to epithelial and cardiac tissues. Desmosomes have two distinct adhesive states, calcium-dependent and hyperadhesive, which balance tissue plasticity and strength. A highly ordered array of cadherins in the adhesive interface is hypothesized to drive hyperadhesion, but how desmosome structure confers adhesive state is still elusive. We employed fluorescence polarization microscopy to show that cadherin order is not required for hyperadhesion induced by pharmacologic and genetic approaches. FRAP experiments in cells treated with the PKCα inhibitor Gö6976 revealed that cadherins, plakoglobin, and desmoplakin have significantly reduced exchange in and out of hyperadhesive desmosomes. To test whether this was a result of enhanced keratin association, we used the desmoplakin mutant S2849G, which conferred reduced protein exchange. We propose that inside-out regulation of protein exchange modulates adhesive function, whereby proteins are “locked in” to hyperadhesive desmosomes while protein exchange confers plasticity on calcium-dependent desmosomes, thereby providing rapid control of adhesion.

     
    more » « less