skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A predictive model for in situ distortion correction in laser powder bed fusion using laser shock peen forming
Award ID(s):
1762722
PAR ID:
10279139
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The International Journal of Advanced Manufacturing Technology
Volume:
112
Issue:
5-6
ISSN:
0268-3768
Page Range / eLocation ID:
1319 to 1337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a laser wakefield accelerator (LWFA), an intense laser pulse excites a plasma wave that traps and accelerates electrons to relativistic energies. When the pulse overlaps the accelerated electrons, it can enhance the energy gain through direct laser acceleration (DLA) by resonantly driving the betatron oscillations of the electrons in the plasma wave. The traditional particle-in-cell (PIC) algorithm, although often the tool of choice to study DLA, contains inherent errors due to numerical dispersion and the time staggering of the electric and magnetic fields. Furthermore, conventional PIC implementations cannot reliably disentangle the fields of the plasma wave and laser pulse, which obscures interpretation of the dominant acceleration mechanism. Here, a customized field solver that reduces errors from both numerical dispersion and time staggering is used in conjunction with a field decomposition into azimuthal modes to perform PIC simulations of DLA in an LWFA. Comparisons with traditional PIC methods, model equations, and experimental data show improved accuracy with the customized solver and convergence with an order-of-magnitude fewer cells. The azimuthal-mode decomposition reveals that the most energetic electrons receive comparable energy from DLA and LWFA. 
    more » « less
  2. Abstract We discuss recent developments and challenges of beam dynamics in Dielectric Laser Acceleration (DLA), for both high and low energy electron beams. Starting from ultra-low emittance nanotip sources the paper follows the beam path of a tentative DLA light source concept. Acceleration in conjuction with focusing is discussed in the framework of Alternating Phase Focusing (APF) and spatial harmonic ponderomotive focusing. The paper concludes with an outlook to the beam dynamics in laser driven nanophotonic undulators, based on tilted DLA grating structures. 
    more » « less