skip to main content


Title: scSorter: assigning cells to known cell types according to marker genes
Abstract On single-cell RNA-sequencing data, we consider the problem of assigning cells to known cell types, assuming that the identities of cell-type-specific marker genes are given but their exact expression levels are unavailable, that is, without using a reference dataset. Based on an observation that the expected over-expression of marker genes is often absent in a nonnegligible proportion of cells, we develop a method called scSorter. scSorter allows marker genes to express at a low level and borrows information from the expression of non-marker genes. On both simulated and real data, scSorter shows much higher power compared to existing methods.  more » « less
Award ID(s):
1925645
NSF-PAR ID:
10279288
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Genome Biology
Volume:
22
Issue:
1
ISSN:
1474-760X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    The recent development of spatially resolved transcriptomics (SRT) technologies has facilitated research on gene expression in the spatial context. Annotating cell types is one crucial step for downstream analysis. However, many existing algorithms use an unsupervised strategy to assign cell types for SRT data. They first conduct clustering analysis and then aggregate cluster-level expression based on the clustering results. This workflow fails to leverage the marker gene information efficiently. On the other hand, other cell annotation methods designed for single-cell RNA-seq data utilize the cell-type marker genes information but fail to use spatial information in SRT data.

    Results

    We introduce a statistical spatial transcriptomics cell assignment model, SPAN, to annotate clusters of cells or spots into known types in SRT data with prior knowledge of predefined marker genes and spatial information. The SPAN model annotates cells or spots from SRT data using predefined overexpressed marker genes and combines a mixture model with a hidden Markov random field to model the spatial dependency between neighboring spots. We demonstrate the effectiveness of SPAN against spatial and nonspatial clustering algorithms through extensive simulation and real data experiments.

    Availability and implementation

    https://github.com/ChengZ352/SPAN.

     
    more » « less
  2. Spatially resolved scRNA-seq (sp-scRNA-seq) technologies provide the potential to comprehensively profile gene expression patterns in tissue context. However, the development of computational methods lags behind the advances in these technologies, which limits the fulfillment of their potential. In this study, we develop a deep learning approach for clustering sp-scRNA-seq data, named Deep Spatially constrained Single-cell Clustering (DSSC). In this model, we integrate the spatial information of cells into the clustering process in two steps: (1) the spatial information is encoded by using a graphical neural network model, and (2) cell-to-cell constraints are built based on the spatial expression pattern of the marker genes and added in the model to guide the clustering process. Then, a deep embedding clustering is performed on the bottleneck layer of autoencoder by Kullback–Leibler (KL) divergence along with the learning of feature representation. DSSC is the first model that can use information from both spatial coordinates and marker genes to guide cell/spot clustering. Extensive experiments on both simulated and real data sets show that DSSC boosts clustering performance significantly compared with the state-of-the-art methods. It has robust performance across different data sets with various cell type/tissue organization and/or cell type/tissue spatial dependency. We conclude that DSSC is a promising tool for clustering sp-scRNA-seq data. 
    more » « less
  3. null (Ed.)
    Single cell RNA-sequencing (scRNA-seq) technology enables comprehensive transcriptomic profiling of thousands of cells with distinct phenotypic and physiological states in a complex tissue. Substantial efforts have been made to characterize single cells of distinct identities from scRNA-seq data, including various cell clustering techniques. While existing approaches can handle single cells in terms of different cell (sub)types at a high resolution, identification of the functional variability within the same cell type remains unsolved. In addition, there is a lack of robust method to handle the inter-subject variation that often brings severe confounding effects for the functional clustering of single cells. In this study, we developed a novel data denoising and cell clustering approach, namely CIBS, to provide biologically explainable functional classification for scRNA-seq data. CIBS is based on a systems biology model of transcriptional regulation that assumes a multi-modality distribution of the cells’ activation status, and it utilizes a Boolean matrix factorization approach on the discretized expression status to robustly derive functional modules. CIBS is empowered by a novel fast Boolean Matrix Factorization method, namely PFAST, to increase the computational feasibility on large scale scRNA-seq data. Application of CIBS on two scRNA-seq datasets collected from cancer tumor micro-environment successfully identified subgroups of cancer cells with distinct expression patterns of epithelial-mesenchymal transition and extracellular matrix marker genes, which was not revealed by the existing cell clustering analysis tools. The identified cell groups were significantly associated with the clinically confirmed lymph-node invasion and metastasis events across different patients. Index Terms—Cell clustering analysis, Data denoising, Boolean matrix factorization, Cancer microenvirionment, Metastasis. 
    more » « less
  4. Single-cell genomic technologies offer vast new resources with which to study cells, but their potential to inform parameter inference of cell dynamics has yet to be fully realized. Here we develop methods for Bayesian parameter inference with data that jointly measure gene expression and Ca2+dynamics in single cells. We propose to share information between cells via transfer learning: for a sequence of cells, the posterior distribution of one cell is used to inform the prior distribution of the next. In application to intracellular Ca2+signalling dynamics, we fit the parameters of a dynamical model for thousands of cells with variable single-cell responses. We show that transfer learning accelerates inference with sequences of cells regardless of how the cells are ordered. However, only by ordering cells based on their transcriptional similarity can we distinguish Ca2+dynamic profiles and associated marker genes from the posterior distributions. Inference results reveal complex and competing sources of cell heterogeneity: parameter covariation can diverge between the intracellular and intercellular contexts. Overall, we discuss the extent to which single-cell parameter inference informed by transcriptional similarity can quantify relationships between gene expression states and signalling dynamics in single cells.

     
    more » « less
  5. When analyzing scRNA-seq data with clustering algorithms, annotating the clusters with cell types is an essential step toward biological interpretation of the data. Annotations can be performed manually using known cell type marker genes. Annotations can also be automated using knowledge-driven or data-driven machine learning algorithms. Majority of cell type annotation algorithms are designed to predict cell types for individual cells in a new dataset. Since biological interpretation of scRNA-seq data is often made on cell clusters rather than individual cells, several algorithms have been developed to annotate cell clusters. In this study, we compared five cell type annotation algorithms, Azimuth, SingleR, Garnett, scCATCH, and SCSA, which cover the spectrum of knowledge-driven and data-driven approaches to annotate either individual cells or cell clusters. We applied these five algorithms to two scRNA-seq datasets of peripheral blood mononuclear cells (PBMC) samples from COVID-19 patients and healthy controls, and evaluated their annotation performance. From this comparison, we observed that methods for annotating individual cells outperformed methods for annotation cell clusters. We applied the cell-based annotation algorithm Azimuth to the two scRNA-seq datasets to examine the immune response during COVID-19 infection. Both datasets presented significant depletion of plasmacytoid dendritic cells (pDCs), where differential expression in this cell type and pathway analysis revealed strong activation of type I interferon signaling pathway in response to the infection. 
    more » « less