Optimal mean value estimates beyondVinogradov’s mean value theorem
More Like this
-
Abstract When$$k\geqslant 4$$and$$0\leqslant d\leqslant (k-2)/4$$, we consider the system of Diophantine equations\begin{align*}x_1^j+\ldots +x_k^j=y_1^j+\ldots +y_k^j\quad (1\leqslant j\leqslant k,\, j\ne k-d).\end{align*}We show that in this cousin of a Vinogradov system, there is a paucity of non-diagonal positive integral solutions. Our quantitative estimates are particularly sharp when$$d=o\!\left(k^{1/4}\right)$$.more » « less
-
We interpret into decoupling language a refinement of a 1973 argument due to Karatsuba on Vinogradov's mean value theorem. The main goal of our argument is to answer what precisely solution counting in older partial progress on Vinogradov's mean value theorem corresponds to in Fourier decoupling theory.more » « less
An official website of the United States government

