Abstract Each day people make decisions about complex topics such as health and personal finances. Causal models of these domains have been created to aid decisions, but the resulting models are often complex and it is not known whether people can use them successfully. We investigate the trade-off between simplicity and complexity in decision making, testing diagrams tailored to target choices (Experiments 1 and 2), and with relevant causal paths highlighted (Experiment 3), finding that simplicity or directing attention to simple causal paths leads to better decisions. We test the boundaries of this effect (Experiment 4), finding that including a small amount of information beyond that related to the target answer has a detrimental effect. Finally, we examine whether people know what information they need (Experiment 5). We find that simple, targeted, information still leads to the best decisions, while participants who believe they do not need information or seek out the most complex information performed worse. 
                        more » 
                        « less   
                    
                            
                            It's complicated: Improving decisions on causally complex topics
                        
                    
    
            We make frequent decisions about how to manage our health, yet do so with information that is highly complex or received piecemeal. Causal models can provide guidance about how components of a complex system interact, yet models that provide a complete causal story may be more complex than people can reason about. Prior work has provided mixed insights into our ability to make decisions with causal models, showing that people can use them in novel domains but that they may impede decisions in familiar ones. We examine how tailoring causal information to the question at hand may aid decision making, using simple diagrams with only the relevant causal paths (Experiment 1) or those paths highlighted within a complex causal model (Experiment 2). We find that diagrams tailored to a choice improve decision accuracy over complex diagrams or prior knowledge, providing new evidence for how causal models can aid decisions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1915210
- PAR ID:
- 10279840
- Editor(s):
- Fitch., T.; Lamm, C.; Leder, H.; Teßmar-Raible, K.
- Date Published:
- Journal Name:
- Proceedings of the 43rd Annual Meeting of the Cognitive Science Society
- Page Range / eLocation ID:
- 2437–2443
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            When people receive advice while making difficult decisions, they often make better decisions in the moment and also increase their knowledge in the process. However, such incidental learning can only occur when people cognitively engage with the information they receive and process this information thoughtfully. How do people process the information and advice they receive from AI, and do they engage with it deeply enough to enable learning? To answer these questions, we conducted three experiments in which individuals were asked to make nutritional decisions and received simulated AI recommendations and explanations. In the first experiment, we found that when people were presented with both a recommendation and an explanation before making their choice, they made better decisions than they did when they received no such help, but they did not learn. In the second experiment, participants first made their own choice, and only then saw a recommendation and an explanation from AI; this condition also resulted in improved decisions, but no learning. However, in our third experiment, participants were presented with just an AI explanation but no recommendation and had to arrive at their own decision. This condition led to both more accurate decisions and learning gains. We hypothesize that learning gains in this condition were due to deeper engagement with explanations needed to arrive at the decisions. This work provides some of the most direct evidence to date that it may not be sufficient to provide people with AI-generated recommendations and explanations to ensure that people engage carefully with the AI-provided information. This work also presents one technique that enables incidental learning and, by implication, can help people process AI recommendations and explanations more carefully.more » « less
- 
            Drawing reliable inferences from data involves many, sometimes arbitrary, decisions across phases of data collection, wrangling, and modeling. As different choices can lead to diverging conclusions, understanding how researchers make analytic decisions is important for supporting robust and replicable analysis. In this study, we pore over nine published research studies and conduct semi-structured interviews with their authors. We observe that researchers often base their decisions on methodological or theoretical concerns, but subject to constraints arising from the data, expertise, or perceived interpretability. We confirm that researchers may experiment with choices in search of desirable results, but also identify other reasons why researchers explore alternatives yet omit findings. In concert with our interviews, we also contribute visualizations for communicating decision processes throughout an analysis. Based on our results, we identify design opportunities for strengthening end-to-end analysis, for instance via tracking and meta-analysis of multiple decision paths.more » « less
- 
            The use of AI-based decision aids in diverse domains has inspired many empirical investigations into how AI models’ decision recommendations impact humans’ decision accuracy in AI-assisted decision making, while explorations on the impacts on humans’ decision fairness are largely lacking despite their clear importance. In this paper, using a real-world business decision making scenario—bidding in rental housing markets—as our testbed, we present an experimental study on understanding how the bias level of the AI-based decision aid as well as the provision of AI explanations affect the fairness level of humans’ decisions, both during and after their usage of the decision aid. Our results suggest that when people are assisted by an AI-based decision aid, both the higher level of racial biases the decision aid exhibits and surprisingly, the presence of AI explanations, result in more unfair human decisions across racial groups. Moreover, these impacts are partly made through triggering humans’ “disparate interactions” with AI. However, regardless of the AI bias level and the presence of AI explanations, when people return to make independent decisions after their usage of the AI-based decision aid, their decisions no longer exhibit significant unfairness across racial groups.more » « less
- 
            Working memory, the brain’s ability to temporarily store and recall information, is a critical part of decision making – but it has its limits. The brain can only store so much information, for so long. Since decisions are not often acted on immediately, information held in working memory ‘degrades’ over time. However, it is unknown whether or not this degradation of information over time affects the accuracy of later decisions. The tactics that people use, knowingly or otherwise, to store information in working memory also remain unclear. Do people store pieces of information such as numbers, objects and particular details? Or do they tend to compute that information, make some preliminary judgement and recall their verdict later? Does the strategy chosen impact people’s decision-making? To investigate, Schapiro et al. devised a series of experiments to test whether the limitations of working memory, and how people store information, affect the accuracy of decisions they make. First, participants were shown an array of colored discs on a screen. Then, either immediately after seeing the disks or a few seconds later, the participants were asked to recall the position of one of the disks they had seen, or the average position of all the disks. This measured how much information degraded for a decision based on multiple items, and how much for a decision based on a single item. From this, the method of information storage used to make a decision could be inferred. Schapiro et al. found that the accuracy of people’s responses worsened over time, whether they remembered the position of each individual disk, or computed their average location before responding. The greater the delay between seeing the disks and reporting their location, the less accurate people’s responses tended to be. Similarly, the more disks a participant saw, the less accurate their response became. This suggests that however people store information, if working memory reaches capacity, decision-making suffers and that, over time, stored information decays. Schapiro et al. also noticed that participants remembered location information in different ways depending on the task and how many disks they were shown at once. This suggests people adopt different strategies to retain information momentarily. In summary, these findings help to explain how people process and store information to make decisions and how the limitations of working memory impact their decision-making ability. A better understanding of how people use working memory to make decisions may also shed light on situations or brain conditions where decision-making is impaired.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    