Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N 2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium( iii ) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH 2 ) 2 Cl] + , or results in dehydrohalogenation to the rhenium( iii ) amido complex, (PNP)Re(NH 2 )Cl. The N–H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N–H bonds is 57 kcal mol −1 , while DFT computations indicate a substantially weaker N–H bond of the putative rhenium( iv )-imide intermediate (BDE = 38 kcal mol −1 ). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH 3 generation. 
                        more » 
                        « less   
                    
                            
                            Demystifying Cp2Ti(H)Cl and its enigmatic role in the reactions of epoxides with Cp2TiCl
                        
                    
    
            The role of Cp2Ti(H)Cl in the reactions of Cp2TiCl with trisubstituted epoxides has been investigated in a combined exptl. and computational study. Although Cp2Ti(H)Cl has generally been regarded as a robust species, its decompn. to Cp2TiCl and mol. hydrogen was found to be exothermic (ΔG = -11 kcal/mol when the effects of THF solvation are considered). In lab. studies, Cp2Ti(H)Cl was generated using the reaction of 1,2-epoxy-1-methylcyclohexane with Cp2TiCl as a model. Rapid evolution of hydrogen gas was measured, indicating that Cp2Ti(H)Cl is indeed a thermally unstable mol., which undergoes intermol. reductive elimination of hydrogen under the reaction conditions. The stoichiometry of the reaction (Cp2TiCl:epoxide = 1:1) and the quantity of hydrogen produced (1 mol per 2 mol of epoxide) is consistent with this assertion. The diminished yield of allylic alc. from these reactions under the conditions of protic vs. aprotic catalysis can be understood in terms of the predominant titanium(III) present in soln. Under the conditions of protic catalysis, Cp2TiCl complexes with collidine hydrochloride and the titanium(III) center is less available for "cross-disproportionation" with carbon-centered radicals; this leads to byproducts from radical capture by hydrogen atom transfer, resulting in a satd. alc. (2-methylcyclohexan-1-ol). [on SciFinder(R)] CAPLUS AN 2020:290383(Conference; Meeting Abstract; Online Computer File) 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1900141
- PAR ID:
- 10279868
- Date Published:
- Journal Name:
- 259th ACS National Meeting & Exposition Abstract of Papers
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Our previous work demonstrated formation of highly insoluble and strongly light-absorbing organic particles in reactions between catechol or guaiacol with Fe( iii ) under pH = 3 conditions characteristic of aerosol liquid water. This work extends these measurements to reactions of Fe( iii ) with 2,4-dinitrophenol, 4-nitrocatechol, 4-methylcatechol, 1,2,4-benzenetriol, 1,2,3-benzenetriol (pyrogallol) and coniferaldehyde to better understand the mechanism of particle formation catalyzed by Fe( iii ). Particles were observed after 2 h of reactions of catechol (43 ± 1% mass yield), 1,2,4-benzenetriol (32 ± 3%), pyrogallol (27 ± 2%) and coniferaldehyde (35 ± 4%), while reactions of 2,4-dinitrophenol and 4-nitrocatechol did not produce any insoluble products. No particles were observed in reaction of 4-methylcatechol after 2 h, however, insoluble products appeared after a 24 h reaction time. Irradiation of a catechol + Fe( iii ) mixture by 405 nm light was found to reduce (but not fully suppress) the particle yield due to a competition between photodegradation and Fe( iii )-catalyzed oligomerization. Particles produced from precursors + Fe( iii ) solutions were dissolved in organic solvents and analyzed with ultra performance liquid chromatography coupled to a photodiode array spectrophotometer and a high resolution mass spectrometer. Major separated chromophores were identified as dimeric, trimeric, and tetrameric products of precursor molecules. Purpurogallin was identified as a major reaction product of pyrogallol reaction with Fe( iii ). To test whether this chemistry can occur in more realistic atmospheric aerosols, reactions of biomass burning organic aerosol (BBOA) extracts with Fe( iii ) were also examined. Two BBOA samples collected under flaming conditions produced no particles, whereas a BBOA sample produced under smoldering conditions resulted in particle formation under both dark and 405 nm irradiation conditions. The results suggest that Fe( iii )-catalyzed chemistry can take place in aging BBOA plumes resulting from smoldering fires and make aerosol particles more light-absorbing.more » « less
- 
            Formaldehyde is an essential building block for hundreds of chemicals and a promising liquid organic hydrogen carrier (LOHC), yet its indirect energy-intensive synthesis process prohibits it from playing a more significant role. Here we report a direct CO reduction to formaldehyde (CORTF) process that utilizes hydrogen underpotential deposition to overcome the thermodynamic barrier and the scaling relationship restriction. This is the first time that this reaction has been realized under ambient conditions. Using molybdenum phosphide as a catalyst, formaldehyde was produced with nearly a 100% faradaic efficiency in aqueous KOH solution, with its formation rate being one order of magnitude higher compared with the state-of-the-art thermal catalysis approach. Simultaneous tuning of the current density and reaction temperature led to a more selective and productive formaldehyde synthesis, indicating the electrochemical and thermal duality of this reaction. DFT calculations revealed that the desorption of the *H 2 CO intermediate likely served as the rate-limiting step, and the participation of H 2 O made the reaction thermodynamically favorable. Furthermore, a full-cell reaction set-up was demonstrated with CO hydrogenation to HCHO achieved without any energy input, which fully realized the spontaneous potential of the reaction. Our study shows the feasibility of combining thermal and electrochemical approaches for realizing the thermodynamics and for scaling relationship-confined reactions, which could serve as a new strategy in future reaction design.more » « less
- 
            A mechanistic study is performed on the reaction method for iron-catalyzed C–H methylation with AlMe 3 reagent, previously proposed to involve cyclometalated iron( iii ) intermediates and an iron( iii )/( i ) reaction cycle. Detailed spectroscopic studies ( 57 Fe Mössbauer, EPR) during catalysis and in stoichiometric reactions identify iron( ii ) complexes, including cyclometalated iron( ii ) intermediates, as the major iron species formed in situ under catalytic reaction conditions. Reaction studies identify a cyclometalated iron( ii )-methyl species as the key intermediate leading to C–H methylated product upon reaction with oxidant, consistent with a previously proposed iron( ii )/iron( iii )/iron( i ) reaction manifold for C–H arylation.more » « less
- 
            The reactions of thioformaldehyde (H 2 CS) with OH radicals and assisted by a single water molecule have been investigated using high level ab initio quantum chemistry calculations. The H 2 CS + ˙OH reaction can in principle proceed through: (1) abstraction, and (2) addition pathways. The barrier height for the addition reaction in the absence of a catalyst was found to be −0.8 kcal mol −1 , relative to the separated reactants, which has a ∼1.0 kcal mol −1 lower barrier than the abstraction channel. The H 2 CS + ˙OH reaction assisted by a single water molecule reduces the barrier heights significantly for both the addition and abstraction channels, to −5.5 and −6.7 kcal mol −1 respectively, compared to the un-catalyzed H 2 CS + ˙OH reaction. These values suggest that water lowers the barriers by ∼6.0 kcal mol −1 for both reaction paths. The rate constants for the H 2 CS⋯H 2 O + ˙OH and OH⋯H 2 O + H 2 CS bimolecular reaction channels were calculated using Canonical Variational Transition state theory (CVT) in conjunction with the Small Curvature Tunneling (SCT) method over the atmospherically relevant temperatures between 200 and 400 K. Rate constants for the H 2 CS + ˙OH reaction paths for comparison with the H 2 CS + ˙OH + H 2 O reaction in the same temperature range were also computed. The results suggest that the rate of the H 2 CS + ˙OH + H 2 O reaction is slower than that of the H 2 CS + ˙OH reaction by ∼1–4 orders of magnitude in the temperatures between 200 and 400 K. For example, at 300 K, the rates of the H 2 CS + ˙OH + H 2 O and H 2 CS + ˙OH reactions were found to be 2.2 × 10 −8 s −1 and 6.4 × 10 −6 s −1 , respectively, calculated using [OH] = 1.0 × 10 6 molecules cm −3 , and [H 2 O] = 8.2 × 10 17 molecules cm −3 (300 K, RH 100%) atmospheric conditions. Electronic structure calculations on the H 2 C(OH)S˙ product in the presence of 3 O 2 were also performed. The results show that H 2 CS is removed from the atmosphere primarily by reacting with ˙OH and O 2 to form thioformic acid, HO 2 , formaldehyde, and SO 2 as the main end products.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    