skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental investigation of the fluctuating static pressure in a subsonic axisymmetric jet
Measuring the fluctuating static pressure within a jet has the potential to depict in-flow sources of the jet noise. In this work, the fluctuating static pressure of a subsonic axisymmetric jet was experimentally investigated using a 1/8” microphone with an aerodynamically shaped nose cone. The power spectra of the fluctuating pressure are found to follow the -7/3 scaling law at the jet centerline with the decay rate varying as the probe approaches the acoustic near field. Profiles of skewness and kurtosis reveal strong intermittency inside the jet shear layer. By applying a continuous wavelet transform (CWT), time-localized footprints of the acoustic sources were detected from the pressure fluctuations. To decompose the fluctuating pressure into the hydrodynamic component and its acoustic counterpart, two techniques based on the CWT are adopted. In the first method the hydrodynamic pressure is isolated by maximizing the correlation with the synchronously measured turbulent velocity, while the second method originates from the Gaussian nature of the acoustic pressure where the separation threshold is determined empirically. Similar results are obtained from both separation techniques, and each pressure component dominates a certain frequency band compared to the global spectrum. Furthermore, cross-spectra between the fluctuating pressure and the turbulent velocity were calculated, and spectral peaks appearing around Strouhal number of 0.4 are indicative of the footprint of the convecting coherent structures inside the jet mixing layer.  more » « less
Award ID(s):
1704768
PAR ID:
10280417
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Aeroacoustics
Volume:
20
Issue:
3-4
ISSN:
1475-472X
Page Range / eLocation ID:
196 to 220
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new Anechoic Wall Jet Wind Tunnel was built at Virginia Tech. A detailed design based on the old wall jet tunnel was done to improve the quality of the resultant flow. Aerodynamic and acoustic calibrations were performed in order to understand properties and characteristics of the flow generated by this new facility which can be used for various aeroacoustic studies. Far-field acoustics were measured using half-inch B&K microphones in a streamwise array to characterize and reduce the background noise. Sound pressure levels were lower by 10 dB for frequencies up to 700Hz in comparison to the old facility. The turbulent surface pressure fluctuations of the wall-jet flow were studied using Sennheiser microphones placed along streamwise and spanwise locations to record surface pressure fluctuations. Comparison of the autocorrelation plotted for microphones along the same span indicate uniform flow features. A decay in the turbulence levels is observed along the downstream direction as expected. Aerodynamic calibrations included mean velocity measurements along different spanwise locations, wall-jet boundary layer profiles and streamwise cross-sections. Spanwise and cross-sectional velocity profiles show good uniformity of the flow. Detailed boundary layer analyses were performed with the parameters obtained from the experiments. 
    more » « less
  2. Direct numerical simulations (DNS) are performed to investigate the spatial evolution of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise domains ( $${>}300\delta _i$$ , with $$\delta _i$$ the inflow boundary-layer thickness) at three different Mach numbers, $2.5$ , $4.9$ and $10.9$ , with the surface temperatures ranging from quasiadiabatic to highly cooled conditions. The settlement of turbulence statistics into a fully developed equilibrium state of the turbulent boundary layer has been carefully monitored, either based on the satisfaction of the von Kármán integral equation or by comparing runs with different inflow turbulence generation techniques. The generated DNS database is used to characterize the streamwise evolution of multiple important variables in the high-Mach-number, cold-wall regime, including the skin friction, the Reynolds analogy factor, the shape factor, the Reynolds stresses, and the fluctuating wall quantities. The data confirm the validity of many classic and newer compressibility transformations at moderately high Reynolds numbers (up to friction Reynolds number $$Re_\tau \approx 1200$$ ) and show that, with proper scaling, the sizes of the near-wall streaks and superstructures are insensitive to the Mach number and wall cooling conditions. The strong wall cooling in the hypersonic cold-wall case is found to cause a significant increase in the size of the near-wall turbulence eddies (relative to the boundary-layer thickness), which leads to a reduced-scale separation between the large and small turbulence scales, and in turn to a lack of an outer peak in the spanwise spectra of the streamwise velocity in the logarithmic region. 
    more » « less
  3. The interaction of a turbulent, spatially developing crossflow with a transverse jet possesses several engineering and technological applications such as film cooling of turbine blades, exhaust plumes, thrust vector control, fuel injection, etc. Direct Numerical Simulation (DNS) of a jet in a crossflow under different streamwise pressure gradients (zero and favorable pressure gradient) is carried out. The purpose is to study the physics behind the transport phenomena and coherent structure dynamics in turbulent crossflow jets at different streamwise pressure gradients and low/high-velocity ratios (0.5 and 1). The temperature was regarded as a passive scalar with a molecular Prandtl number of 0.71. The analysis is performed by prescribing accurate turbulent information (instantaneous velocity and temperature) at the inlet of a computational domain. The upward motion of low-momentum fluid created by the “legs” of the counter-rotating vortex pair (CVP) encounters the downward inviscid flow coming from outside of the turbulent boundary layer, inducing a stagnation point and a shear layer. This layer is characterized by high levels of turbulent mixing, turbulence production, turbulent kinetic energy (TKE) and thermal fluctuations. The formation and development of the above-mentioned shear layer are more evident at higher velocity ratios. 
    more » « less
  4. A direct numerical simulation of incompressible channel flow at a friction Reynolds number (Reτ) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant k = 0.384 ± 0.004. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits k-1 dependence over a short range in wavenumber (k) . Further, consistent with previous experimental observations, when these spectra are multiplied by k (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the k-1 range. 
    more » « less
  5. Direct numerical simulations of turbulent boundary layers with a nominal free-stream Mach number of $$6$$ and a Reynolds number of $$Re_{\unicode[STIX]{x1D70F}}\approx 450$$ are conducted at a wall-to-recovery temperature ratio of $$T_{w}/T_{r}=0.25$$ and compared with a previous database for $$T_{w}/T_{r}=0.76$$ in order to investigate pressure fluctuations and their dependence on wall temperature. The wall-temperature dependence of widely used velocity and temperature scaling laws for high-speed turbulent boundary layers is consistent with previous studies. The near-wall pressure-fluctuation intensities are dramatically modified by wall-temperature conditions. At different wall temperatures, the variation of pressure-fluctuation intensities as a function of wall-normal distance is dramatically modified in the near-wall region but remains almost intact away from the wall. Wall cooling also has a strong effect on the frequency spectrum of wall-pressure fluctuations, resulting in a higher dominant frequency and a sharper spectrum peak with a faster roll-off at both the high- and low-frequency ends. The effect of wall cooling on the free-stream noise spectrum can be largely accounted for by the associated changes in boundary-layer velocity and length scales. The pressure structures within the boundary layer and in the free stream evolve less rapidly as the wall temperature decreases, resulting in an increase in the decorrelation length of coherent pressure structures for the colder-wall case. The pressure structures propagate with similar speeds for both wall temperatures. Due to wall cooling, the generated pressure disturbances undergo less refraction before they are radiated to the free stream, resulting in a slightly steeper radiation wave front in the free stream. Acoustic sources are largely concentrated in the near-wall region; wall cooling most significantly influences the nonlinear (slow) component of the acoustic source term by enhancing dilatational fluctuations in the viscous sublayer while damping vortical fluctuations in the buffer and log layers. 
    more » « less