skip to main content


Title: Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe 2 polymorph catalysts
Electrochemical synthesis of hydrogen peroxide (H 2 O 2 ) in acidic solution can enable the electro-Fenton process for decentralized environmental remediation, but robust and inexpensive electrocatalysts for the selective two-electron oxygen reduction reaction (2e − ORR) are lacking. Here, we present a joint computational/experimental study that shows both structural polymorphs of earth-abundant cobalt diselenide (orthorhombic o -CoSe 2 and cubic c -CoSe 2 ) are stable against surface oxidation and catalyst leaching due to the weak O* binding to Se sites, are highly active and selective for the 2e − ORR, and deliver higher kinetic current densities for H 2 O 2 production than the state-of-the-art noble metal or single-atom catalysts in acidic solution. o -CoSe 2 nanowires directly grown on carbon paper electrodes allow for the steady bulk electrosynthesis of H 2 O 2 in 0.05 M H 2 SO 4 with a practically useful accumulated concentration of 547 ppm, the highest among the reported 2e − ORR catalysts in acidic solution. Such efficient and stable H 2 O 2 electrogeneration further enables the effective electro-Fenton process for model organic pollutant degradation.  more » « less
Award ID(s):
1955074
NSF-PAR ID:
10280499
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Energy & Environmental Science
Volume:
13
Issue:
11
ISSN:
1754-5692
Page Range / eLocation ID:
4189 to 4203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The hydrogen peroxide (H2O2) generation via the electrochemical oxygen reduction reaction (ORR) under ambient conditions is emerging as an alternative and green strategy to the traditional energy‐intensive anthraquinone process and unsafe direct synthesis using H2and O2. It enables on‐site and decentralized H2O2production using air and renewable electricity for various applications. Currently, atomically dispersed single metal site catalysts have emerged as the most promising platinum group metal (PGM)‐free electrocatalysts for the ORR. Further tuning their central metal sites, coordination environments, and local structures can be highly active and selective for H2O2production via the 2eORR. Herein, recent methodologies and achievements on developing single metal site catalysts for selective O2to H2O2reduction are summarized. Combined with theoretical computation and advanced characterization, a structure–property correlation to guide rational catalyst design with a favorable 2eORR process is aimed to provide. Due to the oxidative nature of H2O2and the derived free radicals, catalyst stability and effective solutions to improve catalyst tolerance to H2O2are emphasized. Transferring intrinsic catalyst properties to electrode performance for viable applications always remains a grand challenge. The key performance metrics and knowledge during the electrolyzer development are, therefore, highlighted.

     
    more » « less
  2. Abstract

    High‐performance and inexpensive platinum‐group‐metal (PGM)‐free catalysts for the oxygen reduction reaction (ORR) in challenging acidic media are crucial for proton‐exchange‐membrane fuel cells (PEMFCs). Catalysts based on Fe and N codoped carbon (Fe–N–C) have demonstrated promising activity and stability. However, a serious concern is the Fenton reactions between Fe2+and H2O2generating active free radicals, which likely cause degradation of the catalysts, organic ionomers within electrodes, and polymer membranes used in PEMFCs. Alternatively, Co–N–C catalysts with mitigated Fenton reactions have been explored as a promising replacement for Fe and PGM catalysts. Therefore, herein, the focus is on Co–N–C catalysts for the ORR relevant to PEMFC applications. Catalyst synthesis, structure/morphology, activity and stability improvement, and reaction mechanisms are discussed in detail. Combining experimental and theoretical understanding, the aim is to elucidate the structure–property correlations and provide guidance for rational design of advanced Co catalysts with a special emphasis on atomically dispersed single‐metal‐site catalysts. In the meantime, to reduce H2O2generation during the ORR on the Co catalysts, potential strategies are outlined to minimize the detrimental effect on fuel cell durability.

     
    more » « less
  3. Abstract

    Electrochemical two-electron water oxidation reaction (2e-WOR) has drawn significant attention as a promising process to achieve the continuous on-site production of hydrogen peroxide (H2O2). However, compared to the cathodic H2O2generation, the anodic 2e-WOR is more challenging to establish catalysts due to the severe oxidizing environment. In this study, we combine density functional theory (DFT) calculations with experiments to discover a stable and efficient perovskite catalyst for the anodic 2e-WOR. Our theoretical screening efforts identify LaAlO3perovskite as a stable, active, and selective candidate for catalyzing 2e-WOR. Our experimental results verify that LaAlO3achieves an overpotential of 510 mV at 10 mA cm−2in 4 M K2CO3/KHCO3, lower than those of many reported metal oxide catalysts. In addition, LaAlO3maintains a stable H2O2Faradaic efficiency with only a 3% decrease after 3 h at 2.7 V vs. RHE. This computation-experiment synergistic approach introduces another effective direction to discover promising catalysts for the harsh anodic 2e-WOR towards H2O2.

     
    more » « less
  4. One key objective in electrocatalysis is to design selective catalysts, particularly in cases where the desired products require thermodynamically unfavorable pathways. Electrochemical synthesis of hydrogen peroxide (H 2 O 2 ) via the two-electron water oxidation reaction (2e − WOR) requires a +0.54 V higher potential than four-electron O 2 evolution. So far, best-performing electrocatalysts require considerable overpotentials before reaching peak faradaic efficiency. We present Mn-alloyed TiO 2 coatings prepared by atomic layer deposition (ALD) and annealing as a stable and selective electrocatalyst for 2e − WOR. Faradaic efficiency of >90% at < 150 mV overpotentials was achieved for H 2 O 2 production, accumulating 2.97 mM H 2 O 2 after 8 hours. Nanoscale mixing of Mn 2 O 3 and TiO 2 resulted in a partially filled, highly conductive Mn 3+ intermediate band (IB) within the TiO 2 mid-gap to transport charge across the (Ti,Mn)O x coating. This IB energetically matched that of H 2 O 2 -producing surface intermediates, turning a wide bandgap oxide into a selective electrocatalyst capable of operating in the dark. However, the high selectivity is limited to the low overpotential regime, which limits the system to low current densities and requires further research into increasing turn-over frequency per active site. 
    more » « less
  5. Selective electrochemical two-electron oxygen reduction is a promising route for renewable and on-site H2O2 generation as an alternative to the anthraquinone process. Herein, we report a high-performance nitrogen-coordinated single-atom Pd electrocatalyst, which is derived from Pd-doped zeolitic imidazolate frameworks (ZIFs) through one-step thermolysis. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with X-ray absorption spectroscopy verifies atomically dispersed Pd atoms on nitrogen-doped carbon (Pd-NC). The single-atom Pd-NC catalyst exhibits excellent electrocatalytic performance for two-electron oxygen reduction to H2O2, which shows ∼95% selectivity toward H2O2 and an unprecedented onset potential of ∼0.8 V versus revisable hydrogen electrode (RHE) in 0.1 M KOH. Density functional theory (DFT) calculations demonstrate that the Pd-N4 catalytic sites thermodynamically prefer *–O bond breaking to O–O bond breaking, corresponding to a high selectivity for H2O2 production. This work provides a deep insight into the understanding of the catalytic process and design of high-performance 2e– ORR catalysts. 
    more » « less