skip to main content


Title: Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming
Abstract

Vegetation phenology in spring has substantially advanced under climate warming, consequently shifting the seasonality of ecosystem process and altering biosphere–atmosphere feedbacks. However, whether and to what extent photoperiod (i.e., daylength) affects the phenological advancement is unclear, leading to large uncertainties in projecting future phenological changes. Here we examined the photoperiod effect on spring phenology at a regional scale using in situ observation of six deciduous tree species from the Pan European Phenological Network during 1980–2016. We disentangled the photoperiod effect from the temperature effect (i.e., forcing and chilling) by utilizing the unique topography of the northern Alps of Europe (i.e., varying daylength but uniform temperature distribution across latitudes) and examining phenological changes across latitudes. We found prominent photoperiod‐induced shifts in spring leaf‐out across latitudes (up to 1.7 days per latitudinal degree). Photoperiod regulates spring phenology by delaying early leaf‐out and advancing late leaf‐out caused by temperature variations. Based on these findings, we proposed two phenological models that consider the photoperiod effect through different mechanisms and compared them with a chilling model. We found that photoperiod regulation would slow down the advance in spring leaf‐out under projected climate warming and thus mitigate the increasing frost risk in spring that deciduous forests will face in the future. Our findings identify photoperiod as a critical but understudied factor influencing spring phenology, suggesting that the responses of terrestrial ecosystem processes to climate warming are likely to be overestimated without adequately considering the photoperiod effect.

 
more » « less
Award ID(s):
1702697
NSF-PAR ID:
10375046
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
12
ISSN:
1354-1013
Page Range / eLocation ID:
p. 2914-2927
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phenological escape, a strategy that deciduous understory plants use to access direct light in spring by leafing out before the canopy closes, plays an important role in shaping the recruitment of temperate tree seedlings. Previous studies have investigated how climate change will alter these dynamics for herbaceous species, but there is a knowledge gap related to how woody species such as tree seedlings will be affected. Here, we modeled temperate tree seedling leaf‐out phenology and canopy close phenology in response to environmental drivers and used climate change projections to forecast changes to the duration of spring phenological escape. We then used these predictions to estimate changes in annual carbon assimilation while accounting for reduced carbon assimilation rates associated with hotter and drier summers. Lastly, we applied these estimates to previously published models of seedling growth and survival to investigate the net effect on seedling demographic performance. Our models predict that temperate tree seedlings will experience improved phenological escape and, therefore, increased spring carbon assimilation under climate change conditions. However, increased summer respiration costs will offset the gains in spring under extreme climate change leading to a net loss in annual carbon assimilation and demographic performance. Furthermore, we found that annual carbon assimilation predictions depend strongly on the species of nearby canopy tree that seedlings were planted near, with all seedlings projected to assimilate less carbon (and therefore experience worse demographic performance) when planted nearQuercus rubracanopy trees as opposed toAcer saccharumcanopy trees. We conclude that changes to spring phenological escape will have important effects on how tree seedling recruitment is affected by climate change, with the magnitude of these effects dependent upon climate change severity and biological interactions with neighboring adults. Thus, future studies of temperate forest recruitment should account for phenological escape dynamics in their models.

     
    more » « less
  2. Nelson, Karen E (Ed.)
    Abstract Artificial light at night (ALAN), an increasing anthropogenic driver, is widespread and shows rapid expansion with potential adverse impact on the terrestrial ecosystem. However, whether and to what extent does ALAN affect plant phenology, a critical factor influencing the timing of terrestrial ecosystem processes, remains unexplored due to limited ALAN observation. Here, we used the Black Marble ALAN product and phenology observations from USA National Phenology Network to investigate the impact of ALAN on deciduous woody plants phenology in the conterminous United States. We found that (1) ALAN significantly advanced the date of breaking leaf buds by 8.9 ± 6.9 days (mean ± SD) and delayed the coloring of leaves by 6.0 ± 11.9 days on average; (2) the magnitude of phenological changes was significantly correlated with the intensity of ALAN (P < 0.001); and (3) there was an interaction between ALAN and temperature on the coloring of leaves, but not on breaking leaf buds. We further showed that under future climate warming scenarios, ALAN will accelerate the advance in breaking leaf buds but exert a more complex effect on the coloring of leaves. This study suggests intensified ALAN may have far-reaching but underappreciated consequences in disrupting key ecosystem functions and services, which requires an interdisciplinary approach to investigate. Developing lighting strategies that minimize the impact of ALAN on ecosystems, especially those embedded and surrounding major cities, is challenging but must be pursued. 
    more » « less
  3. Abstract

    Global climate change substantially influences vegetation spring phenology, that is, green‐up date (GUD), in the northern permafrost region. Changes in GUD regulate ecosystem carbon uptake, further feeding back to local and regional climate systems. Extant studies mainly focused on the direct effects of climate factors, such as temperature, precipitation, and insolation; however, the responses of GUD to permafrost degradation caused by warming (i.e., indirect effects) remain elusive yet. In this study, we examined the impacts of permafrost degradation on GUD by analyzing the long‐term trend of satellite‐based GUD in relation to permafrost degradation measured by the start of thaw (SOT) and active layer thickness (ALT). We found significant trends of advancing GUD, SOT, and thickening ALT (< 0.05), with a spatially averaged slope of −2.1 days decade−1, −4.1 days decade−1, and +1.1 cm decade−1, respectively. Using partial correlation analyses, we found more than half of the regions with significantly negative correlations between spring temperature and GUD became nonsignificant after considering permafrost degradation. GUD exhibits dominant‐positive (37.6% vs. 0.6%) and dominant‐negative (1.8% vs. 35.1%) responses to SOT and ALT, respectively. Earlier SOT and thicker ALT would enhance soil water availability, thus alleviating water stress for vegetation green‐up. Based on sensitivity analyses, permafrost degradation was the dominant factor controlling GUD variations in 41.7% of the regions, whereas only 19.6% of the regions were dominated by other climatic factors (i.e., temperature, precipitation, and insolation). Our results indicate that GUDs were more sensitive to permafrost degradation than direct climate change in spring among different vegetation types, especially in high latitudes. This study reveals the significant impacts of permafrost degradation on vegetation GUD and highlights the importance of permafrost status in better understanding spring phenological responses to future climate change.

     
    more » « less
  4. Abstract Aim

    Climate change regulates autumn leaf senescence date (LSD), exhibiting a strong phenological control of plant carbon uptake. Unlike the delaying effect of daily mean temperature (Tmean) on LSD, the impact of warming asymmetry in daytime and nighttime, as evidenced by variations of the diurnal temperature range (DTR), remains elusive. The objectives of this study were to investigate physiological and ecological impacts of DTR on LSD using long‐termin situobservations and to predict the future trends of LSD under warming.

    Location

    Europe.

    Time period

    1950–2015.

    Major taxa studied

    Plant phenology.

    Methods

    We used partial correlation analysis, multiple linear regression and ridge regression to explore the impacts of DTR on LSD. To quantify the importance of potential drivers of LSD, we trained random forest models and applied the SHapley Additive exPlanations method to isolate the marginal contributions of each predictor on LSD. For LSD modelling and projection, we first evaluated two temperature‐driven LSD models [i.e., cooling‐degree‐day (CDD, without DTR effect) and day–night‐temperature CDD (DNCDD, with DTR effect)], then applied them to predict future LSDs.

    Results

    We found that observational increases inTmeanand DTR had contrasting effects on LSD. IncreasedTmeandelayed the LSD, whereas larger DTR overall had an advancing effect. Considering the DTR effect, theTmeansensitivity of LSD was 14% lower than presently estimated (2.4 vs. 2.8 days °C−1). Warming asymmetry‐related drought stress and plant functional traits (i.e., plant isohydricity and water‐use efficiency) potentially explained the advancing effect of DTR on LSD. We found that current projections of future LSD are overestimated because the DTR effect is discounted, suggesting the need for an adequate understanding of how plant phenology responds to warming asymmetry.

    Main conclusions

    Our findings highlight the importance of DTR in controlling LSD variations with an advancing‐dominant effect and call for the improvement of phenology modelling incorporating the DTR effect. Given that DTR showed a globally narrowing trend over the last several decades, more efforts are needed to understand the potential ecological impacts of warming asymmetry and vegetation response to climate change.

     
    more » « less
  5. Abstract

    Climate‐driven shifts in phenology, which are being observed worldwide, affect ecosystem services, trophic interactions, and community composition, presenting challenges to managers in protected areas. Resource management benefits from local, species‐specific phenology information. However, phenology monitoring programs in heterogeneous landscapes typically require serendipitous historical records or many years of contemporary data before trends in phenological responses to changes in climate can be analyzed. Here, we used a trails‐as‐transects approach to rapidly accumulate monitoring data across environmental gradients on three mountains in Acadia National Park, Maine,USA, and compared our results to phenological changes observed in Concord, Massachusetts,USA. In four years of intensive monitoring of transects on three mountains, we found large variability in spring temperatures across the mountains, but consistent patterns of advancing flower and leaf phenology in warmer microclimates. Reduced sampling intensity would have yielded similar results, but a shorter duration would not have revealed these patterns. The plants in Acadia responded to warming spring temperatures by shifting leaf and flower phenology in the same direction (earlier), but at a reduced rate (as measured in d/°C), in comparison with plants in southern New England (e.g., Concord, Massachusetts,USA). Our approach takes advantage of topographical complexity and associated microclimate gradients to substitute for long time series, allowing for rapid assessment of phenological response to climate. Other climate gradients (e.g., urban‐to‐rural, latitudinal, or coastal‐to‐inland) could work similarly. This intensive monitoring over a short time period quickly builds a robust dataset and can inform management decisions regarding future monitoring strategies, including sampling designs for citizen science‐based phenology monitoring programs.

     
    more » « less