skip to main content

Title: Yeast grown in continuous culture systems can detect mutagens with improved sensitivity relative to the Ames test
Continuous culture systems allow for the controlled growth of microorganisms over a long period of time. Here, we develop a novel test for mutagenicity that involves growing yeast in continuous culture systems exposed to low levels of mutagen for a period of approximately 20 days. In contrast, most microorganism-based tests for mutagenicity expose the potential mutagen to the biological reporter at a high concentration of mutagen for a short period of time. Our test improves upon the sensitivity of the well-established Ames test by at least 20-fold for each of two mutagens that act by different mechanisms (the intercalator ethidium bromide and alkylating agent methyl methanesulfonate). To conduct the tests, cultures were grown in small, inexpensive continuous culture systems in media containing (potential) mutagen, and the resulting mutagenicity of the added compound was assessed via two methods: a canavanine-based plate assay and whole genome sequencing. In the canavanine-based plate assay, we were able to detect a clear relationship between the amount of mutagen and the number of canavanine-resistant mutant colonies over a period of one to three weeks of exposure. Whole genome sequencing of yeast grown in continuous culture systems exposed to methyl methanesulfonate demonstrated that quantification of mutations is more » possible by identifying the number of unique variants across each strain. However, this method had lower sensitivity than the plate-based assay and failed to distinguish the different concentrations of mutagen. In conclusion, we propose that yeast grown in continuous culture systems can provide an improved and more sensitive test for mutagenicity. « less
; ; ; ;
Rabilloud, Thierry
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  2. T cell transfer immunotherapy is a highly effective cancer treatment in which the immune system’s inherent ability to fight cancer is amplified by increasing the amount of T cells that are deemed most active within a patient. T cells are a lymphocyte produced as an immune response to cancerous cells. Despite this advanced form of biological therapy, current T cell expansion methods are inefficient, resulting in high manufacturing costs, which brings question to the efficacy of T cell therapies. To address this issue, the recent development of a centrifugal bioreactor aims to rapidly expand T cells for cancer immunotherapy treatments at higher cell densities and in a shorter amount of time compared to current systems on the market. We hypothesize that by producing a mathematical model of a proof-of-concept T cell line to determine substrate consumption and metabolite production over time, we will be able to optimize growth of the cell line in the bioreactor. A series of three studies were performed to produce the growth model: (1) measuring yield coefficients of lactate, ammonium ion, and glucose, (2) determining the Monod constant and maximum specific growth rate, and (3) finding critical metabolite concentrations. To measure yield coefficients, T cells weremore »grown in a 6-well plate at 1 x 105 cells/mL in 4 mL of medium with 100 uL samples taken and frozen each day over a 5-day period. At the end of the study, samples are thawed and used with lactate and ammonium assay kits for microplate reading to determine metabolite levels over time. To determine the Monod constant and maximum specific growth rate, T cells were grown in 12-well plates at pre-calculated varying glucose concentrations in 4 mL of medium in triplicates. Cells were counted for a minimum of six days to determine expansion over time to develop a linearized growth plot. To find critical metabolite concentrations, ammonium and lactate were added to glucose-free T cell medium at four different concentrations in triplicates utilizing a 12-well plate with a seeding density of 1 x 105 cells/mL in 4 mL of medium. The T cells then remained undisturbed in culture and were counted on day three. Once all parameters are determined, we can apply them to the growth model to determine levels of glucose, lactate, and ammonium as the T cells grow to high densities in the bioreactor and, as a result, optimize the manufacturing process for cancer immunotherapy treatments.« less
  3. Metabolic products such as lipids and proteins produced in cyanobacteria represent an excellent source of biomass and do not compete with agricultural land use unlike soybean and corn. Given their potential use as novel materials for biodiesel production, we aimed to explore the e ect of cultivation period and nitrogen concentration on the growth rate and lipid content of Fremyella diplosiphon, a model cyanobacterium. In this study, F. diplosiphon grown in BG11/HEPES medium supplemented with 1.5 g L􀀀1 sodium nitrate (NaNO3) for 7, 10, 15, and 20 days were compared to the untreated control in media amended with 0.25, 0.5, and 1.0 g L􀀀1 NaNO3. Cultures were inoculated in liquid media and grown under continuous fluorescent light in an orbital incubator shaker, and extracted lipids subjected to gravimetric analysis and gas chromatography-mass spectroscopy to determine the best culture conditions for lipid production. Our results demonstrated that a reduction in nitrogen concentration had no significant effect on the growth rate across all cultivation periods; however, the accumulation of total lipid content was significantly influenced by nitrogen concentration. A maximum lipid production (40%) with no reduction in growth was observed in 10-day old cultures in a BG11/HEPES medium supplemented with 1.0 gmore »L􀀀1 NaNO3. Fatty acid methyl ester composition of transesterified lipids demonstrated high amounts of methyl palmitate (50–70%) followed by methyl octadecenoate (17–30%) in the accumulated lipids at all treatments. Trace quantities of methyl dodecanoate, methyl hexadecanoate, methyl octadecanoate, and methyl octadecadienoate (1–8%) were also observed in all tested samples, indicating that nitrogen deprivation in culture media increases lipid production without affecting growth.« less
  4. Polyacetylenic lipids accumulate in various Apiaceae species after pathogen attack, suggesting that these compounds are naturally occurring pesticides and potentially valuable resources for crop improvement. These compounds also promote human health and slow tumor growth. Even though polyacetylenic lipids were discovered decades ago, the biosynthetic pathway underlying their production is largely unknown. To begin filling this gap and ultimately enable polyacetylene engineering, we studied polyacetylenes and their biosynthesis in the major Apiaceae crop carrot (Daucus carota subsp. sativus). Using gas chromatography and mass spectrometry, we identified three known polyacetylenes and assigned provisional structures to two novel polyacetylenes. We also quantified these compounds in carrot leaf, petiole, root xylem, root phloem, and root periderm extracts. Falcarindiol and falcarinol predominated and accumulated primarily in the root periderm. Since the multiple double and triple carbon-carbon bonds that distinguish polyacetylenes from ubiquitous fatty acids are often introduced by Δ12 oleic acid desaturase (FAD2)-type enzymes, we mined the carrot genome for FAD2 genes. We identified a FAD2 family with an unprecedented 24 members and analyzed public, tissue-specific carrot RNA-Seq data to identify coexpressed members with root periderm-enhanced expression. Six candidate genes were heterologously expressed individually and in combination in yeast and Arabidopsis (Arabidopsis thaliana), resultingmore »in the identification of one canonical FAD2 that converts oleic to linoleic acid, three divergent FAD2-like acetylenases that convert linoleic into crepenynic acid, and two bifunctional FAD2s with Δ12 and Δ14 desaturase activity that convert crepenynic into the further desaturated dehydrocrepenynic acid, a polyacetylene pathway intermediate. These genes can now be used as a basis for discovering other steps of falcarin-type polyacetylene biosynthesis, to modulate polyacetylene levels in plants, and to test the in planta function of these molecules. Many organisms implement specialized biochemical pathways to convert ubiquitous metabolites into bioactive chemical compounds. Since plants comprise the majority of the human diet, specialized plant metabolites play crucial roles not only in crop biology but also in human nutrition. Some asterids produce lipid compounds called polyacetylenes (for review, see Negri, 2015) that exhibit antifungal activity (Garrod et al., 1978; Kemp, 1978; Harding and Heale, 1980, 1981; Olsson and Svensson, 1996) and accumulate in response to fungal phytopathogen attack (De Wit and Kodde, 1981; Elgersma and Liem, 1989). These observations have led to the longstanding hypothesis that polyacetylenes are natural pesticides. These same lipid compounds exhibit cytotoxic activity against human cancer cell lines and slow tumor growth (Fujimoto and Satoh, 1988; Matsunaga et al., 1989, 1990; Cunsolo et al., 1993; Bernart et al., 1996; Kobaek-Larsen et al., 2005; Zidorn et al., 2005), making them important nutritional compounds. The major source of polyacetylenes in the human diet is carrot (Daucus carota L.). Carrot is one of the most important crop species in the Apiaceae, with rapidly increasing worldwide cultivation (Rubatzky et al., 1999; Dawid et al., 2015). The most common carrot polyacetylenes are C17 linear aliphatic compounds containing two conjugated carbon-carbon triple bonds, one or two carbon-carbon double bonds, and a diversity of additional in-chain oxygen-containing functional groups. In carrot, the most abundant of these compounds are falcarinol and falcarindiol (Dawid et al., 2015). Based on their structures, it has been hypothesized that these compounds (alias falcarin-type polyacetylenes) are derived from ubiquitous fatty acids. Indeed, biochemical investigations (Haigh et al., 1968; Bohlman, 1988), radio-chemical tracer studies (Barley et al., 1988), and the discovery of pathway intermediates (Jones et al., 1966; Kawazu et al., 1973) implicate a diversion of flux away from linolenate biosynthesis as the entry point into falcarin-type polyacetylene biosynthesis (for review, see Minto and Blacklock, 2008). The final steps of linolenate biosynthesis are the conversion of oleate to linoleate, mediated by fatty acid desaturase 2 (FAD2), and linoleate to linolenate, catalyzed by FAD3. Some plant species contain divergent forms of FAD2 that, instead of or in addition to converting oleate to linoleate, catalyze the installation of unusual in-chain functional groups such as hydroxyl groups, epoxy groups, conjugated double bonds, or carbon-carbon triple bonds into the acyl chain (Badami and Patil, 1980) and thus divert flux from linolenate production into the accumulation of unusual fatty acids. Previous work in parsley (Petroselinum crispum; Apiaceae) identified a divergent form of FAD2 that (1) was up-regulated in response to pathogen treatment and (2) when expressed in soybean embryos resulted in production of the monoyne crepenynate and, by the action of an unassigned enzyme, dehydrocrepenynate (Kirsch et al., 1997; Cahoon et al., 2003). The results of the parsley studies are consistent with a pathogen-responsive, divergent FAD2-mediated pathway that leads to acetylenic fatty acids. However, information regarding the branch point into acetylenic fatty acid production in agriculturally relevant carrot is still largely missing, in particular, the identification and functional characterization of enzymes that can divert carbon flux away from linolenate biosynthesis into the production of dehydrocrepenynate and ultimately falcarin-type polyacetylenes. Such genes, once identified, could be used in the future design of transgenic carrot lines with altered polyacetylene content, enabling direct testing of in planta polyacetylene function and potentially the engineering of pathogen-resistant, more nutritious carrots. These genes could also provide the foundation for further investigations of more basic aspects of plant biology, including the evolution of fatty acid-derived natural product biosynthesis pathways across the Asterid clade, as well as the role of these pathways and compounds in plant ecology and plant defense. Recently, a high-quality carrot genome assembly was released (Iorizzo et al., 2016), providing a foundation for genome-enabled studies of Apiaceous species. This study also provided publicly accessible RNA sequencing (RNA-Seq) data from diverse carrot tissues. Using these resources, this study aimed to provide a detailed gas chromatography-based quantification of polyacetylenes in carrot tissues for which RNA-Seq data are available, then combine this information with bioinformatics analysis and heterologous expression to identify and characterize biosynthetic genes that underlie the major entry point into carrot polyacetylene biosynthesis. To achieve these goals, thin-layer chromatography (TLC) was combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection to identify and quantify polyacetylenic metabolites in five different carrot tissues. Then the sequences and tissue expression profiles of potential FAD2 and FAD2-like genes annotated in the D. carota genome were compared with the metabolite data to identify candidate pathway genes, followed by biochemical functionality tests using yeast (Saccharomyces cerevisae) and Arabidopsis (Arabidopsis thaliana) as heterologous expression systems.« less
  5. Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E . coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E . coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds ( E . coli , 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E . coli , enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log 10 copies per 100 mL,more »respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.« less