New LHCb Collaboration results on pentaquarks with hidden charm 1 are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario.[Formula: see text] In the new data the old LHCb pentaquark [Formula: see text] splits into two states [Formula: see text] and [Formula: see text]. We interpret these two almost degenerated hadrocharmonium states with [Formula: see text] and [Formula: see text], as a result of hyperfine splitting between hadrocharmonium states predicted in Ref. 2. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting[Formula: see text] that is compatible with the experimental data. The new [Formula: see text] state finds a natural explanation as a bound state of [Formula: see text] and a nucleon, with [Formula: see text], [Formula: see text] and binding energy 42 MeV. As a bound state of a spin-[Formula: see text] meson and a nucleon, hadrocharmonium pentaquark [Formula: see text] does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide [Formula: see text] pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks.
more »
« less
Weakly conjugated bacteriochlorin-bacteriochlorin dyad: Synthesis and photophysical properties
Dyads containing two near-infrared absorbing and emitting bacteriochlorins with distinct spectral properties have been prepared and characterized by absorption, emission, and transient-absorption spectroscopies. The dyads exhibit ultrafast ([Formula: see text]3 ps) energy transfer from the bacteriochlorin with the higher-energy S 1 state to the bacteriochlorin emitting at the longer wavelength. The dyads exhibit strong fluorescence and relatively long excited state lifetimes ([Formula: see text]4 ns) in both non-polar and polar solvents, which indicates negligible photoinduced electron transfer between the two bacteriochlorins in the dyads. These dyads are thus attractive for the development of light-harvesting arrays and fluorophores for in vivo bioimaging.
more »
« less
- Award ID(s):
- 1955318
- PAR ID:
- 10280852
- Date Published:
- Journal Name:
- Journal of Porphyrins and Phthalocyanines
- ISSN:
- 1088-4246
- Page Range / eLocation ID:
- A to J
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The design/synthesis and characterization of organic donor–acceptor (D–A) dyads can provide precious data allowing to improve the efficiency of classical photo-induced bimolecular interactions/processes. In this report, two novel triplet D–A dyads (4 and 5) were synthesized and fully characterized. While the optical absorption and emission profiles of these new systems exhibit similar spectral structures as that of the triplet donor/sensitizer quinoidal thioamide (QDN), the transient absorption (TA) spectra of these two dyads produced new features that can be associated with triplet transients and charge transfer species. However, the kinetics of the excited-state processes/dynamics is significantly influenced by the geometrical arrangement(s) of donor/acceptor chromophores. Further analysis of the TA data suggests that the dyad with slip-stack geometry (4) is less effective in undergoing both intra- and inter-dyad triplet energy transfer than the dyad with co-facial geometry (5). Subsequently, triplet sensitization of 9,10-diphenylanthracene (DPA) using both dyads led to upconverted photoluminescence via triplet–triplet annihilation of DPA triplet transients. But, it was found that a maximum upconversion quantum yield could be achieved at a low power density using the co-facial type dyad 5. Altogether, these results provide valuable guidance in the design of triplet donor–acceptor dyads, which could be used for light-harvesting/modulation applications.more » « less
-
Breaking waves modulate the transfer of energy, momentum, and mass between the ocean and atmosphere, controlling processes critical to the climate system, from gas exchange of carbon dioxide and oxygen to the generation of sea spray aerosols that can be transported in the atmosphere and serve as cloud condensation nuclei. The smallest components, i.e., drops and bubbles generated by breaking waves, play an outsize role. This fascinating problem is characterized by a wide range of length scales, from wind forcing the wave field at scales of [Formula: see text](1 km–0.1 m) to the dynamics of wave breaking at [Formula: see text](10–0.1 m); air bubble entrainment, dynamics, and dissolution in the water column at [Formula: see text](1 m–10 μm); and bubbles bursting at [Formula: see text](10 mm–1 μm), generating sea spray droplets at [Formula: see text](0.5 mm–0.5 μm) that are ejected into atmospheric turbulent boundary layers. I discuss recent progress to bridge these length scales, identifying the controlling processes and proposing a path toward mechanistic parameterizations of air–sea mass exchange that naturally accounts for sea state effects.more » « less
-
Join-the-shortest queue (JSQ) is a classical benchmark for the performance of parallel-server queueing systems because of its strong optimality properties. Recently, there has been significant progress in understanding its large-system asymptotic behavior. In this paper, we analyze the JSQ policy in the super-Halfin-Whitt scaling window when load per server [Formula: see text] scales with the system size N as [Formula: see text] for [Formula: see text] and [Formula: see text]. We establish that the centered and scaled total queue length process converges to a certain Bessel process with negative drift, and the associated (centered and scaled) steady-state total queue length, indexed by N, converges to a [Formula: see text] distribution. The limit laws are universal in the sense that they do not depend on the value of [Formula: see text] and exhibit fundamentally different behavior from both the Halfin–Whitt regime ([Formula: see text]) and the nondegenerate slowdown (NDS) regime ([Formula: see text]). Funding: This work was supported by the National Science Foundation to S. Banerjee [Grants CAREER DMS-2141621 and RTG DMS-2134107] and D. Mukherjee and Z. Zhao [Grants CIF-2113027 and CPS-2240982].more » « less
-
We develop an analytical framework to study experimental design in two-sided marketplaces. Many of these experiments exhibit interference, where an intervention applied to one market participant influences the behavior of another participant. This interference leads to biased estimates of the treatment effect of the intervention. We develop a stochastic market model and associated mean field limit to capture dynamics in such experiments and use our model to investigate how the performance of different designs and estimators is affected by marketplace interference effects. Platforms typically use two common experimental designs: demand-side “customer” randomization ([Formula: see text]) and supply-side “listing” randomization ([Formula: see text]), along with their associated estimators. We show that good experimental design depends on market balance; in highly demand-constrained markets, [Formula: see text] is unbiased, whereas [Formula: see text] is biased; conversely, in highly supply-constrained markets, [Formula: see text] is unbiased, whereas [Formula: see text] is biased. We also introduce and study a novel experimental design based on two-sided randomization ([Formula: see text]) where both customers and listings are randomized to treatment and control. We show that appropriate choices of [Formula: see text] designs can be unbiased in both extremes of market balance while yielding relatively low bias in intermediate regimes of market balance. This paper was accepted by David Simchi-Levi, revenue management and market analytics.more » « less
An official website of the United States government

