skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local Projections and VARs Estimate the Same Impulse Responses
We prove that local projections (LPs) and Vector Autoregressions (VARs) estimate the same impulse responses. This nonparametric result only requires unrestricted lag structures. We discuss several implications: (i) LP and VAR estimators are not conceptually separate procedures; instead, they are simply two dimension reduction techniques with common estimand but different finite‐sample properties. (ii) VAR‐based structural identification—including short‐run, long‐run, or sign restrictions—can equivalently be performed using LPs, and vice versa. (iii) Structural estimation with an instrument (proxy) can be carried out by ordering the instrument first in a recursive VAR, even under noninvertibility. (iv) Linear VARs are as robust to nonlinearities as linear LPs.  more » « less
Award ID(s):
1851665
PAR ID:
10281002
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Econometrica
Volume:
89
Issue:
2
ISSN:
0012-9682
Page Range / eLocation ID:
955 to 980
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electromagnetic transient simulation of parallel-connected 4-MW type-3 wind turbines based on original equipment manufacturer's real-code turbine model shows 1.2-Hz turbine–turbine oscillations in reactive power. This letter reveals why such oscillations occur in the individual var measurement while being insignificant in the total var measurement, regardless of the varying grid impedance. We adopt two analysis approaches, i.e., open-loop single-input single-output analysis and network decomposition. These two approaches differ in their treatment of turbine–network interaction. The open-loop analysis shows that the turbine–turbine oscillation mode is due to an open-loop system pole being attracted to an open-loop system zero. Furthermore, we use a network decomposition method to explain why this mode is observable in individual vars, while not observable in the total var. The entire system of n turbines can be viewed as n decoupled circuits. For the two-turbine case, the system has an aggregated mode and a turbine–turbine oscillation mode. The aggregated mode is associated with a circuit associated with the total var, while the turbine–turbine oscillation mode is associated with the var difference and is insensitive to the grid parameters. 
    more » « less
  2. With rich visual data, such as images, becoming readily associated with items, visually-aware recommendation systems (VARS) have been widely used in different applications. Recent studies have shown that VARS are vulnerable to item-image adversarial attacks, which add human-imperceptible perturbations to the clean images associated with those items. Attacks on VARS pose new security challenges to a wide range of applications, such as e-commerce and social media, where VARS are widely used. How to secure VARS from such adversarial attacks becomes a critical problem. Currently, there is still a lack of systematic studies on how to design defense strategies against visual attacks on VARS. In this article, we attempt to fill this gap by proposing anadversarial image denoising and detectionframework to secure VARS. Our proposed method can simultaneously (1) secure VARS from adversarial attacks characterized bylocalperturbations by image denoising based onglobalvision transformers; and (2) accurately detect adversarial examples using a novel contrastive learning approach. Meanwhile, our framework is designed to be used as both a filter and a detector so that they can bejointlytrained to improve the flexibility of our defense strategy to a variety of attacks and VARS models. Our approach is uniquely tailored for VARS, addressing the distinct challenges in scenarios where adversarial attacks can differ across industries, for instance, causing misclassification in e-commerce or misrepresentation in real estate. We have conducted extensive experimental studies with two popular attack methods (FGSM and PGD). Our experimental results on two real-world datasets show that our defense strategy against visual attacks is effective and outperforms existing methods on different attacks. Moreover, our method demonstrates high accuracy in detecting adversarial examples, complementing its robustness across various types of adversarial attacks. 
    more » « less
  3. Automated marker makers (AMMs) are decentralized exchanges that enable the automated trading of digital assets. Liquidity providers (LPs) deposit digital tokens, which can be used by traders to execute trades, which generate fees for the investing LPs. In AMMs, trade prices are determined algorithmically, unlike classical limit order books. Concentrated liquidity market makers (CLMMs) are a major class of AMMs that offer liquidity providers flexibility to decide not onlyhow muchliquidity to provide, butin what ranges of pricesthey want the liquidity to be used. This flexibility can complicate strategic planning, since fee rewards are shared among LPs. We formulate and analyze a game theoretic model to study the incentives of LPs in CLMMs. Our main results show that while our original formulation admits multiple Nash equilibria and has complexity quadratic in the number of price ticks in the contract, it can be reduced to a game with a unique Nash equilibrium whose complexity is only linear. We further show that the Nash equilibrium of this simplified game follows a waterfilling strategy, in which low-budget LPs use up their full budget, but rich LPs do not. Finally, by fitting our game model to real-world CLMMs, we observe that in liquidity pools with risky assets, LPs adopt investment strategies far from the Nash equilibrium. Under price uncertainty, they generally invest in fewer and wider price ranges than our analysis suggests, with lower-frequency liquidity updates. In such risky pools, by updating their strategy to more closely match the Nash equilibrium of our game, LPs can improve their median daily returns by $116, which corresponds to an increase of 0.009% in median daily return on investment (ROI). At maximum, LPs can improve daily ROI by 0.855% when they reach Nash equilibrium. In contrast, in stable pools (e.g., of only stablecoins), LPs already adopt strategies that more closely resemble the Nash equilibrium of our game. 
    more » « less
  4. We derive fast approximation schemes for LP relaxations of several well-studied geometric optimization problems that include packing, covering, and mixed packing and covering constraints. Previous work in computational geometry concentrated mainly on the rounding stage to prove approximation bounds, assuming that the underlying LPs can be solved efficiently. This work demonstrates that many of those results can be made to run in nearly linear time. In contrast to prior work on this topic our algorithms handle weights and capacities, side constraints, and also apply to mixed packing and covering problems, in a unified fashion. Our framework relies crucially on the properties of a randomized MWU algorithm of [41]; we demonstrate that it is well-suited for range spaces that admit efficient approximate dynamic data structures for emptiness oracles. Our framework cleanly separates the MWU algorithm for solving the LP from the key geometric data structure primitives, and this enables us to handle side constraints in a simple way. Combined with rounding algorithms that can also be implemented efficiently, we obtain the first near-linear constant factor approximation algorithms for several problems. 
    more » « less
  5. Toll/Toll-like receptors (TLRs) are key regulators of the innate immune system in both invertebrates and vertebrates. However, while mammalian TLRs directly recognize pathogen-associated molecular patterns, the insect Toll pathway is thought to be primarily activated by binding Spätzle cytokines that are processed from inactive precursors in response to microbial infection. Phylogenetic and structural data generated in this study supported earlier results showing that Toll9 members differ from other insect Tolls by clustering with the mammalian TLR4 group, which recognizes lipopolysaccharide (LPS) through interaction with myeloid differentiation-2 (MD-2)–like proteins. Functional experiments showed that BmToll9 from the silkmothBombyx morialso recognized LPS through interaction with two MD-2–like proteins, previously named BmEsr16 and BmPP, that we refer to in this study as BmMD-2A and BmMD-2B, respectively. A chimeric BmToll9–TLR4 receptor consisting of the BmToll9 ectodomain and mouse TLR4 transmembrane and Toll/interleukin-1 (TIR) domains also activated LPS-induced release of inflammatory factors in murine cells but only in the presence of BmMD-2A or BmMD-2B. Overall, our results indicate that BmToll9 is a pattern recognition receptor for LPS that shares conserved features with the mammalian TLR4–MD-2–LPS pathway. 
    more » « less