skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: The Role of the Right Hemisphere in Processing Phonetic Variability Between Talkers
Abstract Neurobiological models of speech perception posit that both left and right posterior temporal brain regions are involved in the early auditory analysis of speech sounds. However, frank deficits in speech perception are not readily observed in individuals with right hemisphere damage. Instead, damage to the right hemisphere is often associated with impairments in vocal identity processing. Herein lies an apparent paradox: The mapping between acoustics and speech sound categories can vary substantially across talkers, so why might right hemisphere damage selectively impair vocal identity processing without obvious effects on speech perception? In this review, I attempt to clarify the role of the right hemisphere in speech perception through a careful consideration of its role in processing vocal identity. I review evidence showing that right posterior superior temporal, right anterior superior temporal, and right inferior / middle frontal regions all play distinct roles in vocal identity processing. In considering the implications of these findings for neurobiological accounts of speech perception, I argue that the recruitment of right posterior superior temporal cortex during speech perception may specifically reflect the process of conditioning phonetic identity on talker information. I suggest that the relative lack of involvement of other right hemisphere regions in speech perception may be because speech perception does not necessarily place a high burden on talker processing systems, and I argue that the extant literature hints at potential subclinical impairments in the speech perception abilities of individuals with right hemisphere damage.  more » « less
Award ID(s):
1735225
PAR ID:
10281102
Author(s) / Creator(s):
Date Published:
Journal Name:
Neurobiology of Language
Volume:
2
Issue:
1
ISSN:
2641-4368
Page Range / eLocation ID:
138 to 151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Though the right hemisphere has been implicated in talker processing, it is thought to play a minimal role in phonetic processing, at least relative to the left hemisphere. Recent evidence suggests that the right posterior temporal cortex may support learning of phonetic variation associated with a specific talker. In the current study, listeners heard a male talker and a female talker, one of whom produced an ambiguous fricative in /s/-biased lexical contexts (e.g., epi?ode) and one who produced it in /∫/-biased contexts (e.g., friend?ip). Listeners in a behavioral experiment (Experiment 1) showed evidence of lexically guided perceptual learning, categorizing ambiguous fricatives in line with their previous experience. Listeners in an fMRI experiment (Experiment 2) showed differential phonetic categorization as a function of talker, allowing for an investigation of the neural basis of talker-specific phonetic processing, though they did not exhibit perceptual learning (likely due to characteristics of our in-scanner headphones). Searchlight analyses revealed that the patterns of activation in the right superior temporal sulcus (STS) contained information about who was talking and what phoneme they produced. We take this as evidence that talker information and phonetic information are integrated in the right STS. Functional connectivity analyses suggested that the process of conditioning phonetic identity on talker information depends on the coordinated activity of a left-lateralized phonetic processing system and a right-lateralized talker processing system. Overall, these results clarify the mechanisms through which the right hemisphere supports talker-specific phonetic processing.

     
    more » « less
  2. Abstract

    Modulation of vocal pitch is a key speech feature that conveys important linguistic and affective information. Auditory feedback is used to monitor and maintain pitch. We examined induced neural high gamma power (HGP) (65–150 Hz) using magnetoencephalography during pitch feedback control. Participants phonated into a microphone while hearing their auditory feedback through headphones. During each phonation, a single real‐time 400 ms pitch shift was applied to the auditory feedback. Participants compensated by rapidly changing their pitch to oppose the pitch shifts. This behavioral change required coordination of the neural speech motor control network, including integration of auditory and somatosensory feedback to initiate change in motor plans. We found increases in HGP across both hemispheres within 200 ms of pitch shifts, covering left sensory and right premotor, parietal, temporal, and frontal regions, involved in sensory detection and processing of the pitch shift. Later responses to pitch shifts (200–300 ms) were right dominant, in parietal, frontal, and temporal regions. Timing of activity in these regions indicates their role in coordinating motor change and detecting and processing of the sensory consequences of this change. Subtracting out cortical responses during passive listening to recordings of the phonations isolated HGP increases specific to speech production, highlighting right parietal and premotor cortex, and left posterior temporal cortex involvement in the motor response. Correlation of HGP with behavioral compensation demonstrated right frontal region involvement in modulating participant's compensatory response. This study highlights the bihemispheric sensorimotor cortical network involvement in auditory feedback‐based control of vocal pitch.Hum Brain Mapp 37:1474‐1485, 2016. © 2016 Wiley Periodicals, Inc.

     
    more » « less
  3. Abstract

    Though listeners readily recognize speech from a variety of talkers, accommodating talker variability comes at a cost: Myriad studies have shown that listeners are slower to recognize a spoken word when there is talker variability compared with when talker is held constant. This review focuses on two possible theoretical mechanisms for the emergence of these processing penalties. One view is that multitalker processing costs arise through a resource-demanding talker accommodation process, wherein listeners compare sensory representations against hypothesized perceptual candidates and error signals are used to adjust the acoustic-to-phonetic mapping (an active control process known ascontextual tuning). An alternative proposal is that these processing costs arise because talker changes involve salient stimulus-level discontinuities that disruptauditory attention. Some recent data suggest that multitalker processing costs may be driven by both mechanisms operating over different time scales. Fully evaluating this claim requires a foundational understanding of both talker accommodation and auditory streaming; this article provides a primer on each literature and also reviews several studies that have observed multitalker processing costs. The review closes by underscoring a need for comprehensive theories of speech perception that better integrate auditory attention and by highlighting important considerations for future research in this area.

     
    more » « less
  4. Abstract Lay summary

    Individuals with ASD and schizophrenia are more likely to perceive asynchronous auditory and visual events as occurring simultaneously even if they are well separated in time. We investigated whether similar difficulties in audiovisual temporal processing were present in subclinical populations with high autistic and schizotypal traits. We found that the ability to detect audiovisual asynchrony was not affected by different levels of autistic and schizotypal traits. We also found that connectivity of some brain regions engaging in multisensory and timing tasks might explain an individual's tendency to bind multisensory information within a wide or narrow time window.Autism Res2021, 14: 668–680. © 2020 International Society for Autism Research and Wiley Periodicals LLC

     
    more » « less
  5. Abstract

    This longitudinal study examined the prospective association between toddler–mother attachment to adolescents’ (n = 52; 34 boys; Mage = 13.22 years; 90% White) behavioral and neural responses during the evaluation of trustworthiness from unfamiliar, emotionally neutral faces. At 33 months, toddler–mother attachment status (secure vs insecure classification) was assessed using a modified Strange Situation procedure. Results revealed that attachment moderated the processing of trustworthiness facial cues. As faces became less trustworthy, adolescents with a secure (vs insecure) attachment history rated the faces as correspondingly less trustworthy and showed increasing (vs overall blunted) activation in brain regions involved in trustworthiness perception (i.e. bilateral amygdala, bilateral fusiform, right anterior insula and right posterior superior temporal sulcus). Findings suggest that a secure compared with insecure child–mother attachment in toddlerhood may be associated with greater capacity for, or openness to, processing potentially negative social information at both the behavioral and neural levels during adolescence.

     
    more » « less