skip to main content


Title: An Exploration of Methods Using Social Media to Examine Local Attitudes Towards Mask-Wearing During a Pandemic
During the COVID-19 health crisis, local public officials continue to expend considerable energy encouraging citizens to comply with prevention measures in order to reduce the spread of infection. During the pandemic, mask-wearing has been accepted among health officials as a simple preventative measure; however, some local areas have been more likely to comply than others. This paper explores methods to better understand local attitudes towards mask-wearing as a tool for public health officials’ situational awareness when preparing public messaging campaigns. This exploration compares three methods to explore local attitudes: sentiment analysis, n-grams, and hashtags. We also explore hashtag co-occurrence networks as a possible starting point to begin the filtering process. The results show that while sentiment analysis is quick and easy to employ, the results offer little insight into specific local attitudes towards mask-wearing, while examining hashtags and hashtag co-occurrence networks may be used a tool for a more robust understanding of local areas when attempting to gain situational awareness.  more » « less
Award ID(s):
1951917
NSF-PAR ID:
10281194
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the International ISCRAM Conference
ISSN:
2411-3387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplification risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk perception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimizing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% contained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing. 
    more » « less
  2. Article Authors Metrics Comments Media Coverage Peer Review Abstract Introduction Methods Results Discussion Conclusions Supporting information References Reader Comments Figures Abstract Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplification risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk perception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimizing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% contained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing. 
    more » « less
  3. null (Ed.)
    Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplifica- tion risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk per- ception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimiz- ing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% con- tained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environ- ment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing. 
    more » « less
  4. Abstract Wearing masks reduces the spread of COVID-19, but compliance with mask mandates varies across individuals, time, and space. Accurate and continuous measures of mask wearing, as well as other health-related behaviors, are important for public health policies. This article presents a novel approach to estimate mask wearing using geotagged Twitter image data from March through September, 2020 in the United States. We validate our measure using public opinion survey data and extend the analysis to investigate county-level differences in mask wearing. We find a strong association between mask mandates and mask wearing—an average increase of 20%. Moreover, this association is greatest in Republican-leaning counties. The findings have important implications for understanding how governmental policies shape and monitor citizen responses to public health crises. 
    more » « less
  5. We present a computational cognitive model that incorporates and formalizes aspects of theories of individual-level behavior change and present simulations of COVID-19 behavioral response that modulates transmission rates. This formalization includes addressing the psychological constructs of attitudes, self-efficacy, and motivational intensity. The model yields signature phenomena that appear in the oscillating dynamics of mask wearing and the effective reproduction number, as well as the overall increase of rates of mask-wearing in response to awareness of an ongoing pandemic. 
    more » « less