skip to main content

Title: Time-resolved turbulent dynamo in a laser plasma
Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas ( P m < 1 ). However, the same framework proposes that the fluctuation dynamo should operate differently when P m ≳ 1 , the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory P m ≳ 1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the more » driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Award ID(s):
2033925 1908551
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray self-emission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamicsmore »rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos.« less

    Beginning with cosmological initial conditions at z = 100, we simulate the effects of magnetic fields on the formation of Population III stars and compare our results with the predictions of Paper I. We use gadget-2 to follow the evolution of the system while the field is weak. We introduce a new method for treating kinematic fields by tracking the evolution of the deformation tensor. The growth rate in this stage of the simulation is lower than expected for diffuse astrophysical plasmas, which have a very low resistivity (high magnetic Prandtl number); we attribute this to the large numerical resistivity in simulations, corresponding to a magnetic Prandtl number of order unity. When the magnetic field begins to be dynamically significant in the core of the minihalo at z = 27, we map it on to a uniform grid and follow the evolution in an adaptive mesh refinement, MHD simulation in orion2. The non-linear evolution of the field in the orion2 simulation violates flux-freezing and is consistent with the theory proposed by Xu & Lazarian. The fields approach equipartition with kinetic energy at densities ∼1010–1012 cm−3. When the same calculation is carried out in orion2 with no magnetic fields, several protostars form, rangingmore »in mass from ∼1 to 30 M⊙; with magnetic fields, only a single ∼30 M⊙ protostar forms by the end of the simulation. Magnetic fields thus suppress the formation of low-mass Pop III stars, yielding a top-heavy Pop III initial mass function and contributing to the absence of observed Pop III stars.

    « less
  3. We study within a fully kinetic framework the generation of “seed” magnetic fields through the Weibel instability, driven in an initially unmagnetized plasma by a large-scale shear force. We develop an analytical model that describes the development of thermal pressure anisotropy via phase mixing, the ensuing exponential growth of magnetic fields in the linear Weibel stage, and the saturation of the Weibel instability when the seed magnetic fields become strong enough to instigate gyromotion of particles and thereby inhibit their free-streaming. The predicted scaling dependencies of the saturated fields on key parameters (e.g., ratio of system scale to electron skin depth and forcing amplitude) are confirmed by two-dimensional and three-dimensional particle-in-cell simulations of an electron–positron plasma. This work demonstrates the spontaneous magnetization of a collisionless plasma through large-scale motions as simple as a shear flow and therefore has important implications for magnetogenesis in dilute astrophysical systems.
  4. ABSTRACT Relativistic jets from supermassive black holes are among the most powerful and luminous astrophysical systems in Universe. We propose that the open magnetic field lines through the black hole, which drive a strongly magnetized jet, may have their polarity reversing over time scales related to the growth of the magnetorotational dynamo in the disc, resulting in dissipative structures in the jet characterized by reversing toroidal field polarities, referred to as ‘stripes’. The magnetic reconnection between the stripes dissipates the magnetic energy and powers jet acceleration. The striped jet model can explain the jet acceleration, large-scale jet emission, and blazar emission signatures consistently in a unified physical picture. Specifically, we find that the jet accelerates to the bulk Lorentz factor Γ ≳ 10 within 1-parsec distance from the central engine. The acceleration slows down but continues at larger distances, with intrinsic acceleration rate $\dot{\Gamma }/\Gamma$ between $0.0005$ and $0.005~\rm {yr^{-1}}$ at tens of parsecs, which is in very good agreement with recent radio observations. Magnetic reconnection continuously accelerates non-thermal particles over large distances from the central engine, resulting in the core-shift effect and overall flat-to-inverted synchrotron spectrum. The large-scale spectral luminosity peak νpeak is antiproportional to the location of themore »peak of the dissipation, which is set by the minimal stripe width lmin. The blazar zone is approximately at the same location. At this distance, the jet is moderately magnetized, with the comoving magnetic field strength and dissipation power consistent with typical leptonic blazar model parameters.« less
  5. ABSTRACT Active galactic nuclei (AGNs) feedback is responsible for maintaining plasma in global thermal balance in extended haloes of elliptical galaxies and galaxy clusters. Local thermal instability in the hot gas leads to the formation of precipitating cold gas clouds that feed the central supermassive black holes, thus heating the hot gas and maintaining global thermal equilibrium. We perform 3D magnetohydrodynamical (MHD) simulations of self-regulated AGNs feedback in a Perseus-like galaxy cluster with the aim of understanding the impact of the feedback physics on the turbulence properties of the hot and cold phases of the intracluster medium (ICM). We find that, in general, the cold phase velocity structure function (VSF) is steeper than the prediction from Kolmogorov’s theory. We attribute the physical origin of the steeper slope of the cold phase VSF to the driving of turbulent motions primarily by the gravitational acceleration acting on the ballistic clouds. We demonstrate that, in the pure hydrodynamical case, the precipitating cold filaments may be the dominant agent driving turbulence in the hot ICM. The arguments in favour of this hypothesis are that: (i) the cold phase mass dominates over hot gas mass in the inner cool core; (ii) hot and cold gasmore »velocities are spatially correlated; (iii) both the cold and hot phase velocity distributions are radially biased. We show that, in the MHD case, the turbulence in the ambient hot medium (excluding the jet cone regions) can also be driven by the AGN jets. The driving is then facilitated by enhanced coupling due to magnetic fields of the ambient gas and the AGN jets. In the MHD case, turbulence may thus be driven by a combination of AGN jet stirring and filament motions. We conclude that future observations, including those from high spatial and spectral resolution X-ray missions, may help to constrain self-regulated AGN feedback by quantifying the multitemperature VSF in the ICM.« less