skip to main content

Title: Bayesian inference and uncertainty propagation using efficient fractional-order viscoelastic models for dielectric elastomers
Dielectric elastomers are employed for a wide variety of adaptive structures. Many of these soft elastomers exhibit significant rate-dependencies in their response. Accurately quantifying this viscoelastic behavior is non-trivial and in many cases a nonlinear modeling framework is required. Fractional-order operators have been applied to modeling viscoelastic behavior for many years, and recent research has shown fractional-order methods to be effective for nonlinear frameworks. This implementation can become computationally expensive to achieve an accurate approximation of the fractional-order derivative. Accurate estimation of the elastomer’s viscoelastic behavior to quantify parameter uncertainty motivates the use of Markov Chain Monte Carlo (MCMC) methods. Since MCMC is a sampling based method, requiring many model evaluations, efficient estimation of the fractional derivative operator is crucial. In this paper, we demonstrate the effectiveness of using quadrature techniques to approximate the Riemann–Liouville definition for fractional derivatives in the context of estimating the uncertainty of a nonlinear viscoelastic model. We also demonstrate the use of parameter subset selection techniques to isolate parameters that are identifiable in the sense that they are uniquely determined by measured data. For those identifiable parameters, we employ Bayesian inference to compute posterior distributions for parameters. Finally, we propagate parameter uncertainties through the models more » to compute prediction intervals for quantities of interest. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Intelligent Material Systems and Structures
Page Range or eLocation-ID:
486 to 496
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we investigate hyperelastic and viscoelastic model parameters using Global Sensitivity Analysis(GSA). These models are used to characterize the physical response of many soft-elastomers, which are used in a wide variety of smart material applications. Recent research has shown the effectiveness of using fractional-order calculus operators in modeling the viscoelastic response. The GSA is performed using parameter subset selection (PSS), which quantifies the relative parameter contributions to the linear and nonlinear, fractional-order viscoelastic models. Calibration has been performed to quantify the model parameter uncertainty; however, this analysis has led to questions regarding parameter sensitivity and whether or notmore »the parameters can be uniquely identified given the available data. By performing GSA we can determine which parameters are most influential in the model, and fix non-influential parameters at a nominal value. The model calibration can then be performed to quantify the uncertainty of the influential parameters.« less
  2. SUMMARY Full-waveform inversion (FWI) methods rely on accurate numerical simulation of wave propagation in the analysed medium. Acoustic or elastic wave equations are often used to model seismic wave propagation. These types of simulations do not account for intrinsic attenuation effects due to material anelasticity, and thus correction techniques have been utilized in practice to partially compensate the anelasticity. These techniques often only consider the waveform amplitude correction based on averaging of overall amplitude response over the entire data set, and ignore the phase correction. Viscoelastic wave equations account for the anelastic response in both waveform amplitude and phase, andmore »are therefore a more suitable alternative. In this study, we present a novel 3-D Gauss–Newton viscoelastic FWI (3-D GN-VFWI) method. To address the main challenge of the Gauss–Newton optimization, we develop formulas to compute the Jacobian efficiently by the convolution of virtual sources and backward wavefields. The virtual sources are obtained by directly differentiating the viscoelastic wave equations with respect to model parameters. In order to resolve complex 3-D structures with reasonable computational effort, a homogeneous attenuation (Q factor) is used throughout the analysis to model the anelastic effects. Synthetic and field experiments are performed to demonstrate the utility of the method. The synthetic results clearly demonstrate the ability of the method in characterizing a challenging velocity profile, including voids and reverse velocity layers. The field experimental results show that method successfully characterizes the complex substructure with two voids and undulating limestone bedrock, which are confirmed by invasive tests. Compared to 3-D elastic FWI results, the presented viscoelastic method produces more accurate results regarding depths of the voids and bedrock. This study suggests that the improvement of imaging accuracy would warrant the widespread use of viscoelastic wave equations in FWI problems. To our best knowledge, this is the first reported study on 3-D GN-VFWI at any scale. This study provides the new theory and formulation for the use of Gauss–Newton optimization on the 3-D viscoelastic problem.« less
  3. Purpose Product developers using life cycle toxicity characterization models to understand the potential impacts of chemical emissions face serious challenges related to large data demands and high input data uncertainty. This motivates greater focus on model sensitivity toward input parameter variability to guide research efforts in data refinement and design of experiments for existing and emerging chemicals alike. This study presents a sensitivity-based approach for estimating toxicity characterization factors given high input data uncertainty and using the results to prioritize data collection according to parameter influence on characterization factors (CFs). Proof of concept is illustrated with the UNEP-SETAC scientific consensusmore »model USEtox. Methods Using Monte Carlo analysis, we demonstrate a sensitivity-based approach to prioritize data collection with an illustrative example of aquatic ecotoxicity CFs for the vitamin B derivative niacinamide, which is an antioxidant used in personal care products. We calculate CFs via 10,000 iterations assuming plus-or-minus one order of magnitude variability in fate and exposure-relevant data inputs, while uncertainty in effect factor data is modeled as a central t distribution. Spearman’s rank correlation indices are used for all variable inputs to identify parameters with the largest influence on CFs. Results and discussion For emissions to freshwater, the niacinamide CF is near log-normally distributed with a geometric mean of 0.02 and geometric standard deviation of 8.5 PAF m3 day/kg. Results of Spearman’s rank correlation show that degradation rates in air, water, and soil are the most influential parameters in calculating CFs, thus benefiting the most from future data refinement and experimental research. Kow, sediment degradation rate, and vapor pressure were the least influential parameters on CF results. These results may be very different for other, e.g., more lipophilic chemicals, where Kow is known to drive many fate and exposure aspects in multimedia modeling. Furthermore, non-linearity between input parameters and CF results prevents transferring sensitivity conclusions from one chemical to another. Conclusions A sensitivity-based approach for data refinement and research prioritization can provide guidance to database managers, life cycle assessment practitioners, and experimentalists to concentrate efforts on the few parameters that are most influential on toxicity characterization model results. Researchers can conserve resources and address parameter uncertainty by applying this approach when developing new or refining existing CFs for the inventory items that contribute most to toxicity impacts.« less
  4. Modeling physiochemical relationships using dynamic data is a common task in fields throughout science and engineering. A common step in developing generalizable, mechanistic models is to fit unmeasured parameters to measured data. However, fitting differential equation-based models can be computation-intensive and uncertain due to the presence of nonlinearity, noise, and sparsity in the data, which in turn causes convergence to local minima and divergence issues. This work proposes a merger of machine learning (ML) and mechanistic approaches by employing ML models as a means to fit nonlinear mechanistic ordinary differential equations (ODEs). Using a two-stage indirect approach, neural ODEs aremore »used to estimate state derivatives, which are then used to estimate the parameters of a more interpretable mechanistic ODE model. In addition to its computational efficiency, the proposed method demonstrates the ability of neural ODEs to better estimate derivative information than interpolating methods based on algebraic data-driven models. Most notably, the proposed method is shown to yield accurate predictions even when little information is known about the parameters of the ODEs. The proposed parameter estimation approach is believed to be most advantageous when the ODE to be fit is strongly nonlinear with respect to its unknown parameters.« less
  5. Abstract Motivation

    Advances in experimental and imaging techniques have allowed for unprecedented insights into the dynamical processes within individual cells. However, many facets of intracellular dynamics remain hidden, or can be measured only indirectly. This makes it challenging to reconstruct the regulatory networks that govern the biochemical processes underlying various cell functions. Current estimation techniques for inferring reaction rates frequently rely on marginalization over unobserved processes and states. Even in simple systems this approach can be computationally challenging, and can lead to large uncertainties and lack of robustness in parameter estimates. Therefore we will require alternative approaches to efficiently uncover themore »interactions in complex biochemical networks.


    We propose a Bayesian inference framework based on replacing uninteresting or unobserved reactions with time delays. Although the resulting models are non-Markovian, recent results on stochastic systems with random delays allow us to rigorously obtain expressions for the likelihoods of model parameters. In turn, this allows us to extend MCMC methods to efficiently estimate reaction rates, and delay distribution parameters, from single-cell assays. We illustrate the advantages, and potential pitfalls, of the approach using a birth–death model with both synthetic and experimental data, and show that we can robustly infer model parameters using a relatively small number of measurements. We demonstrate how to do so even when only the relative molecule count within the cell is measured, as in the case of fluorescence microscopy.

    Availability and implementation

    Accompanying code in R is available at

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less