skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining 3D-Printed Models and Open Source Molecular Modeling of p53 To Engage Students with Concepts in Cell Biology
While understanding macromolecular structural elements and their roles in dictating cellular function is critical to grasp basic concepts in biology, it can be challenging for students to master this content—these elements naturally exist at the nanoscale and are not observable with the naked eye. Oftentimes this understanding is catalyzed by impactful illustrations and animations found online and in textbooks. In recent years, 3D printing technology has become readily accessible as an additional way to generate models and visualize entities of interest. In this report, we describe and discuss the efficacy of an approach using 3D-printed models in combination with online open-source molecular modeling analyses of the macromolecular structure of p53 to engage students with molecular concepts in cancer cell biology and human health. This pedagogy strategy has been successfully integrated into an upper-level undergraduate course at a primarily undergraduate institution and a graduate biology course at a public research university. We describe the potential benefits while providing tools for others to integrate this strategy into their teaching.  more » « less
Award ID(s):
2028519 1723744
PAR ID:
10281341
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Microbiology & Biology Education
Volume:
21
Issue:
3
ISSN:
1935-7877
Page Range / eLocation ID:
10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Undergraduate research experiences are increasingly important in biology education with efforts underway to provide more projects by embedded them in a course. The shift to online learning at the beginning of the pandemic presented a challenge. How could biology instructors provide research experiences to students who were unable to attend in-person labs? During the 2021 ISMB (Intelligent Systems for Molecular Biology) iCn3D Hackathon–Collaborative Tools for Protein Analysis–we learned about new capabilities in iCn3D for analyzing the interactions between amino acids in the paratopes of antibodies with amino acids in the epitopes of antigens and predicting the effects of mutations on binding. Additionally, new sequence alignment tools in iCn3D support aligning protein sequences with sequences in structure models. We used these methods to create a new undergraduate research project, that students could perform online as part of a course, by combining the use of new features in iCn3D with analysis tools in NextStrain, and a data set of anti-SARS-CoV-2 antibodies. We present results from an example project to illustrate how students would investigate the likelihood of SARS-CoV-2 variants escaping from commercial antibodies and use chemical interaction data to support their hypotheses. We also demonstrate that online tools (iCn3D, NextStrain, and the NCBI databases) can be used to carry out the necessary steps and that this work satisfies the requirements for course-based undergraduate research. This project reinforces major concepts in undergraduate biology–evolution and the relationship between the sequence of a protein, its three-dimensional structure, and its function. 
    more » « less
  2. Wessner, David R (Ed.)
    Visual models are a necessary part of molecular biology education because submicroscopic compounds and processes cannot be directly observed. Accurately interpreting the biological information conveyed by the shapes and symbols in these visual models requires engaging visual literacy skills. For students to develop expertise in molecular biology visual literacy, they need to have structured experiences using and creating visual models, but there is little evidence to gauge how often undergraduate biology students are provided such opportunities. To investigate students’ visual literacy experiences, we surveyed 66 instructors who taught lower division undergraduate biology courses with a focus on molecular biology concepts. We collected self-reported data about the frequency with which the instructors teach with visual models and we analyzed course exams to determine how instructors incorporated visual models into their assessments. We found that most instructors reported teaching with models in their courses, yet only 16% of exam items in the sample contained a visual model. There was not a statistically significant relationship between instructors’ self-reported frequency of teaching with models and extent to which their exams contained models, signaling a potential mismatch between teaching and assessment practices. Although exam items containing models have the potential to elicit higher-order cognitive skills through model-based reasoning, we found that when instructors included visual models in their exams the majority of the items only targeted the lower-order cognitive skills of Bloom’s Taxonomy. Together, our findings highlight that despite the importance of visual models in molecular biology, students may not often have opportunities to demonstrate their understanding of these models on assessments. 
    more » « less
  3. Synopsis Plants are fundamental to life, providing oxygen, food, and climate regulation, while also offering solutions to global challenges. Integrating plant biology into an undergraduate curriculum, while supporting and nurturing students’ career interests present both opportunities and challenges. Undergraduate biology education often overlooks plants due to limited student interest and a strong focus on health professions, particularly among women and underrepresented minorities. Here, we describe how plants are incorporated in the Biology curriculum at Spelman College, a women’s liberal arts college and a Historically Black College and University where Biology is a popular major. The department has successfully embedded plant biology across its skills and competency-based curriculum, from the foundational introductory sequence to upper-level electives and research experiences. Students learn core biological concepts in the introductory core curriculum, consisting of four courses progressing from ecological to molecular levels, where plant-related content is integrated through inquiry driven, hands-on activities or field trips. In upper-level electives and research-based courses, faculty offer a robust program in plant biology that enables deeper understanding and integration across disciplines as they address real world problems that intersect with students’ diverse interests. Survey data indicate that students perceive a balanced exposure to plants and other organisms in introductory courses and recognize the importance of plants for understanding core biological principles. Although this exposure does not significantly shift their primary career interest in medicine, it contributes to a broad biology education, skill development, and an increased interest in research. 
    more » « less
  4. This paper describes the results from an ongoing project where hands-on models and associated activities are integrated throughout an undergraduate statics course with the goal of deepening students’ conceptual understanding, scaffolding spatial skills, and therefore developing representational competence with foundational concepts such as vectors, forces, moments, and free-body diagrams. Representational competence refers to the fluency with which a subject expert can move between different representations of a concept (e.g. mathematical, symbolic, graphical, 2D vs. 3D, pictorial) as appropriate for communication, reasoning, and problem solving. This study sought to identify the characteristics of modeling activities that make them effective for all learners. Student volunteers engaged in individual interviews in which they solved problems that included 2D diagrams, 3D models, and worked calculations. Participating students had prior experience with the models and related activity sheets earlier in the course. Data was collected at the end of the quarter and the activities emphasized conceptual understanding. Thematic analysis was used to develop codes and identify themes in students’ use of the models as it relates to developing representational competence. Students used the models in a variety of ways. They wrote directly on the models, touched and gestured with the model, adjusted components, and observed the model from multiple orientations. They added new elements and deconstructed the models to feel the force or imagine how measurements would be impacted if one parameter was changed while all others held constant. In interviews students made connections to previous courses as well as previous activities and experiences with the models. In addition to using the 3D models, participants also used more than one representation (e.g. symbolic or 2D diagram) to solve problems and communicate thinking. While the use of models and manipulatives is commonplace in mechanics instruction, this work seeks to provide more nuanced information about how students use these learning aids to develop and reinforce their own understanding of key concepts. The authors hope these findings will be useful for others interested in designing and refining hands-on mechanics activities toward specific learning goals. 
    more » « less
  5. Abstract This paper describes the results from an ongoing project where hands-on models and associated activities are integrated throughout an undergraduate statics course with the goal of deepening students’ conceptual understanding, scaffolding spatial skills, and therefore developing representational competence with foundational concepts such as vectors, forces, moments, and free-body diagrams. Representational competence refers to the fluency with which a subject expert can move between different representations of a concept (e.g. mathematical, symbolic, graphical, 2D vs. 3D, pictorial) as appropriate for communication, reasoning, and problem solving. This study sought to identify the characteristics of modeling activities that make them effective for all learners. Student volunteers engaged in individual interviews in which they solved problems that included 2D diagrams, 3D models, and worked calculations. Participating students had prior experience with the models and related activity sheets earlier in the course. Data was collected at the end of the quarter and the activities emphasized conceptual understanding. Thematic analysis was used to develop codes and identify themes in students’ use of the models as it relates to developing representational competence. Students used the models in a variety of ways. They wrote directly on the models, touched and gestured with the model, adjusted components, and observed the model from multiple orientations. They added new elements and deconstructed the models to feel the force or imagine how measurements would be impacted if one parameter was changed while all others held constant. In interviews students made connections to previous courses as well as previous activities and experiences with the models. In addition to using the 3D models, participants also used more than one representation (e.g. symbolic or 2D diagram) to solve problems and communicate thinking. While the use of models and manipulatives is commonplace in mechanics instruction, this work seeks to provide more nuanced information about how students use these learning aids to develop and reinforce their own understanding of key concepts. The authors hope these findings will be useful for others interested in designing and refining hands-on mechanics activities toward specific learning goals. 
    more » « less