Anaerobic oxidation of methane (AOM) is hypothesized to occur through reverse hydrogenotrophic methanogenesis in marine sediments because sulfate reducers pull hydrogen concentrations so low that reverse hydrogenotrophic methanogenesis is exergonic. If true, hydrogenotrophic methanogenesis can theoretically co-occur with sulfate reduction if the organic matter is so labile that fermenters produce more hydrogen than sulfate reducers can consume, causing hydrogen concentrations to rise. Finding accumulation of biologically-produced methane in sulfate-containing organic-rich sediments would therefore support the theory that AOM occurs through reverse hydrogenotrophic methanogenesis since it would signal the absence of net AOM in the presence of sulfate. Methods16S rRNA gene libraries were compared to geochemistry and incubations in high depth-resolution sediment cores collected from organic-rich Cape Lookout Bight, North Carolina. ResultsWe found that methane began to accumulate while sulfate is still abundant (6–8 mM). Methane-cycling archaeaANME-1,Methanosarciniales, andMethanomicrobialesalso increased at these depths. Incubations showed that methane production in the upper 16 cm in sulfate-rich sediments was biotic since it could be inhibited by 2-bromoethanosulfonoic acid (BES). DiscussionWe conclude that methanogens mediate biological methane production in these organic-rich sediments at sulfate concentrations that inhibit methanogenesis in sediments with less labile organic matter, and that methane accumulation and growth of methanogens can occur under these conditions as well. Our data supports the theory that H2concentrations, rather than the co-occurrence of sulfate and methane, control whether methanogenesis or AOM via reverse hydrogenotrophic methanogenesis occurs. We hypothesize that the high amount of labile organic matter at this site prevents AOM, allowing methane accumulation when sulfate is low but still present in mM concentrations.
more »
« less
Organohalide-Respiring Bacteria at the Heart of Anaerobic Metabolism in Arctic Wet Tundra Soils
ABSTRACT Recent work revealed an active biological chlorine cycle in coastal Arctic tundra of northern Alaska. This raised the question of whether chlorine cycling was restricted to coastal areas or if these processes extended to inland tundra. The anaerobic process of organohalide respiration, carried out by specialized bacteria like Dehalococcoides , consumes hydrogen gas and acetate using halogenated organic compounds as terminal electron acceptors, potentially competing with methanogens that produce the greenhouse gas methane. We measured microbial community composition and soil chemistry along an ∼262-km coastal-inland transect to test for the potential of organohalide respiration across the Arctic Coastal Plain and studied the microbial community associated with Dehalococcoides to explore the ecology of this group and its potential to impact C cycling in the Arctic. Concentrations of brominated organic compounds declined sharply with distance from the coast, but the decrease in organic chlorine pools was more subtle. The relative abundances of Dehalococcoides were similar across the transect, except for being lower at the most inland site. Dehalococcoides correlated with other strictly anaerobic genera, plus some facultative ones, that had the genetic potential to provide essential resources (hydrogen, acetate, corrinoids, or organic chlorine). This community included iron reducers, sulfate reducers, syntrophic bacteria, acetogens, and methanogens, some of which might also compete with Dehalococcoides for hydrogen and acetate. Throughout the Arctic Coastal Plain, Dehalococcoides is associated with the dominant anaerobes that control fluxes of hydrogen, acetate, methane, and carbon dioxide. Depending on seasonal electron acceptor availability, organohalide-respiring bacteria could impact carbon cycling in Arctic wet tundra soils. IMPORTANCE Once considered relevant only in contaminated sites, it is now recognized that biological chlorine cycling is widespread in natural environments. However, linkages between chlorine cycling and other ecosystem processes are not well established. Species in the genus Dehalococcoides are highly specialized, using hydrogen, acetate, vitamin B 12 -like compounds, and organic chlorine produced by the surrounding community. We studied which neighbors might produce these essential resources for Dehalococcoides species. We found that Dehalococcoides species are ubiquitous across the Arctic Coastal Plain and are closely associated with a network of microbes that produce or consume hydrogen or acetate, including the most abundant anaerobic bacteria and methanogenic archaea. We also found organic chlorine and microbes that can produce these compounds throughout the study area. Therefore, Dehalococcoides could control the balance between carbon dioxide and methane (a more potent greenhouse gas) when suitable organic chlorine compounds are available to drive hydrogen and acetate uptake.
more »
« less
- Award ID(s):
- 1712774
- PAR ID:
- 10281613
- Editor(s):
- Rudi, Knut
- Date Published:
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 87
- Issue:
- 3
- ISSN:
- 0099-2240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As marine sediments are buried, microbial communities transition from sulfate-reduction to methane-production after sulfate is depleted. When this biogenic methane diffuses into the overlying sulfate-rich sediments, it forms a sulfate-methane transition zone (SMTZ) because sulfate reducers deplete hydrogen concentrations and make hydrogenotrophic methanogenesis exergonic in the reverse direction, a process called the anaerobic oxidation of methane (AOM). Microbial participation in these processes is often inferred from geochemistry, genes, and gene expression changes with sediment depth, using sedimentation rates to convert depth to time. Less is known about how natural sediments transition through these geochemical states transition in real-time. We examined 16S rRNA gene amplicon libraries and metatranscriptomes in microcosms of anoxic sediment from the White Oak River estuary, NC, with three destructively sampled replicates with methane added (586-day incubations) and three re-sampled un-amended replicates (895-day incubations). Sulfate dropped to a low value (∼0.3 mM) on similar days for both experiments (312 and 320 days, respectively), followed by a peak in hydrogen, intermittent increases in methane-cycling archaea starting on days 375 and 362 (mostly Methanolinea spp. and Methanosaeta spp., and Methanococcoides sp. ANME-3), and a methane peak 1 month later. However, methane δ 13 C values only show net methanogenesis 6 months after methane-cycling archaea increase and 4 months after the methane peak, when sulfate is consistently below 0.1 mM and hydrogen increases to a stable 0.61 ± 0.13 nM (days 553–586, n = 9). Sulfate-reducing bacteria (mostly Desulfatiglans spp. and Desulfosarcina sp. SEEP-SRB1) increase in relative abundance only during this period of net methane production, suggesting syntrophy with methanogens in the absence of sulfate. The transition from sulfate reduction to methane production in marine sediments occurs through a prolonged period of methane-cycling by methanogens at low sulfate concentrations, and steady growth of sulfate reducers along with methanogens after sulfate is depleted.more » « less
-
An isotopic labeling experiment was conducted in an Arctic coastal wet tundra ecosystem to determine how quickly acetate is transformed into methane and transported from the soil to the atmosphere. Carbon-13 (13C) labelled acetate was injected into soil chambers installed across a 131 meter (m) transect. Gas samples were periodically collected from the headspace in chambers, and analyzed for methane concentration and enrichment in 13C. Methane flux was roughly estimated from the final concentration in the chambers accumulated over a one-hour sampling period. This dataset includes methane fluxes, concentrations and 13C enrichment values from this experiment. In addition, water samples were collected from 15 centimeters (cm) depth after the final time point for measurements of residual dissolved 13C-methane in the soil after 9 days.more » « less
-
Methylotrophic methanogenesis in the sulfate-rich zone of coastal and marine sediments couples with anaerobic oxidation of methane (AOM), forming the cryptic methane cycle. This study provides evidence of cryptic methane cycling in the sulfate-rich zone across a land–ocean transect of four stations–two brackish, one marine, and one hypersaline–within the Carpinteria Salt Marsh Reserve (CSMR), southern California, USA. Samples from the top 20 cm of sediment from the transect were analyzed through geochemical and molecular (16S rRNA) techniques, in-vitro methanogenesis incubations, and radiotracer incubations utilizing 35S-SO4, 14C-mono-methylamine, and 14C-CH4. Sediment methane concentrations were consistently low (3 to 28 µM) at all stations, except for the marine station, where methane increased with depth reaching 665 µM. Methanogenesis from mono-methylamine was detected throughout the sediment at all stations with estimated CH4 production rates in the sub-nanomolar to nanomolar range per cm3 sediment and day. 16S rRNA analysis identified methanogenic archaea (Methanosarcinaceae, Methanomassiliicoccales, and Methanonatronarchaeacea) capable of producing methane from methylamines in sediment where methylotrophic methanogenesis was found to be active. Metabolomic analysis of porewater showed mono-methylamine was mostly undetectable (<3 µM) or present in trace amounts (<10 µM) suggesting rapid metabolic turnover. In-vitro methanogenesis incubations of natural sediment showed no linear methane buildup, suggesting a process limiting methane emissions. AOM activity, measured with 14C-CH4, overlapped with methanogenesis from mono-methylamine activity at all stations, with rates ranging from 0.03 to 19.4 nmol cm− 3 d− 1. Geochemical porewater analysis showed the CSMR sediments are rich in sulfate and iron. Porewater sulfate concentrations (9–91 mM) were non-limiting across the transect, supporting sulfate reduction activity (1.5–2,506 nmol cm− 3 d− 1). Porewater sulfide and iron (II) profiles indicated that the sediment transitioned from a predominantly iron-reducing environment at the two brackish stations to a predominantly sulfate-reducing environment at the marine and hypersaline stations, which coincided with the presence of phyla (Desulfobacterota) involved in these processes. AOM activity overlapped with sulfate reduction and porewater iron (II) concentrations suggesting that AOM is likely coupled to sulfate and possibly iron reduction at all stations. However, 16S rRNA analysis identified anaerobic methanotrophs (ANME-2) only at the marine and hypersaline stations while putative methanogens were found in sediment across all stations. In one sediment horizon at the marine station, methanogen families (Methanosarcinaceae, Methanosaetaceae, Methanomassiliicoccales, and Methanoregulaceae) and ANME 2a,2b, and 2c groups were found together. Collectively, our data suggest that at the brackish stations methanogens alone may be involved in cryptic methane cycling, while at the marine and hypersaline stations both groups may be involved in the process. Differences in rate constants from incubations with 14C-labeled methane and mono-methylamine suggest a non-methanogenic process oxidizing mono-methylamine to inorganic carbon, likely mediated by sulfate-reducing bacteria. Understanding the potential competition of sulfate reducers with methanogens for mono-methylamine needs further investigation as it might be another important process responsible for low methane emissions in salt marshes.more » « less
-
Soil anoxia is common in the annually thawed surface (‘active’) layer of permafrost soils, particularly when soils are saturated, and supports anaerobic microbial metabolism and methane (CH4) production. Rainfall contributes to soil saturation, but can also introduce oxygen, causing soil oxidation and altering anoxic conditions. We simulated a rainfall event in soil mesocosms from two dominant tundra types, tussock tundra and wet sedge tundra, to test the impacts of rainfall‐induced soil oxidation on microbial communities and their metabolic capacity for anaerobic CH4 production and aerobic respiration following soil oxidation. In both types, rainfall increased total soil O2 concentration, but in tussock tundra there was a 2.5‐fold greater increase in soil O2 compared to wet sedge tundra due to differences in soil drainage. Metagenomic and metatranscriptomic analyses found divergent microbial responses to rainfall between tundra types. Active microbial taxa in the tussock tundra community, including bacteria and fungi, responded to rainfall with a decline in gene expression for anaerobic metabolism and a concurrent increase in gene expression for cellular growth. In contrast, the wet sedge tundra community showed no significant changes in microbial gene expression from anaerobic metabolism, fermentation, or methanogenesis following rainfall, despite an initial increase in soil O2 concentration. These results suggest that rainfall induces soil oxidation and enhances aerobic microbial respiration in tussock tundra communities but may not accumulate or remain in wet sedge tundra soils long enough to induce a community‐wide shift from anaerobic metabolism. Thus, rainfall may serve only to maintain saturated soil conditions that promote CH4 production in low‐lying wet sedge tundra soils across the Arctic.more » « less
An official website of the United States government

