skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Weaponizing Unicodes with Deep Learning -Identifying Homoglyphs with Weakly Labeled Data
Visually similar characters, or homoglyphs, can be used to perform social engineering attacks or to evade spam and plagiarism detectors. It is thus important to understand the capabilities of an attacker to identify homoglyphs - particularly ones that have not been previously spotted - and leverage them in attacks. We investigate a deep-learning model using embedding learning, transfer learning, and augmentation to determine the visual similarity of characters and thereby identify potential homoglyphs. Our approach uniquely takes advantage of weak labels that arise from the fact that most characters are not homoglyphs. Our model drastically outperforms the Normal-ized Compression Distance approach on pairwise homoglyph identification, for which we achieve an average precision of 0.97. We also present the first attempt at clustering homoglyphs into sets of equivalence classes, which is more efficient than pairwise information for security practitioners to quickly lookup homoglyphs or to normalize confusable string encodings. To measure clustering performance, we propose a metric (mBIOU) building on the classic Intersection-Over-Union (IOU) metric. Our clustering method achieves 0.592 mBIOU, compared to 0.430 for the naive baseline. We also use our model to predict over 8,000 previously unknown homoglyphs, and find good early indications that many of these may be true positives. Source code and list of predicted homoglyphs are uploaded to Github: https://github.com/PerryXDeng/weaponizing_unicode.  more » « less
Award ID(s):
1816851
PAR ID:
10281634
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Intelligence and Security Informatics (ISI)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Metric clustering is fundamental in areas ranging from Combinatorial Optimization and Data Mining, to Machine Learning and Operations Research. However, in a variety of situations we may have additional requirements or knowledge,distinct from the underlying metric, regarding which pairs of points should be clustered together. To capture and analyze such scenarios, we introduce a novel family of stochastic pairwise constraints, which we incorporate into several essential clustering objectives (radius/median/means). Moreover, we demonstrate that these constraints can succinctly model an intriguing collection of applications, including among others, Individual Fairness in clustering and Must-link constraints in semi-supervised learning. Our main result consists of a general framework that yields approximation algorithms with provable guarantees for important clustering objectives, while at the same time producing solutions that respect the stochastic pairwise constraints. Furthermore, for certain objectives we devise improved results in the case of Must-link constraints, which are also the best possible from a theoretical perspective. Finally, we present experimental evidence that validates the effectiveness of our algorithms. 
    more » « less
  2. Metric clustering is fundamental in areas ranging from Combinatorial Optimization and Data Mining, to Machine Learning and Operations Research. However, in a variety of situations we may have additional requirements or knowledge, distinct from the underlying metric, regarding which pairs of points should be clustered together. To capture and analyze such scenarios, we introduce a novel family of stochastic pairwise constraints, which we incorporate into several essential clustering objectives (radius/median/means). Moreover, we demonstrate that these constraints can succinctly model an intriguing collection of applications, including among others Individual Fairness in clustering and Must-link constraints in semi-supervised learning. Our main result consists of a general framework that yields approximation algorithms with provable guarantees for important clustering objectives, while at the same time producing solutions that respect the stochastic pairwise constraints. Furthermore, for certain objectives we devise improved results in the case of Must-link constraints, which are also the best possible from a theoretical perspective. Finally, we present experimental evidence that validates the effectiveness of our algorithms. 
    more » « less
  3. Many metric learning tasks, such as triplet learning, nearest neighbor retrieval, and visualization, are treated primarily as embedding tasks where the ultimate metric is some variant of the Euclidean distance (e.g., cosine or Mahalanobis), and the algorithm must learn to embed points into the pre-chosen space. The study of non-Euclidean geometries is often not explored, which we believe is due to a lack of tools for learning non-Euclidean measures of distance. Recent work has shown that Bregman divergences can be learned from data, opening a promising approach to learning asymmetric distances. We propose a new approach to learning arbitrary Bergman divergences in a differentiable manner via input convex neural networks and show that it overcomes significant limitations of previous works. We also demonstrate that our method more faithfully learns divergences over a set of both new and previously studied tasks, including asymmetric regression, ranking, and clustering. Our tests further extend to known asymmetric, but non-Bregman tasks, where our method still performs competitively despite misspecification, showing the general utility of our approach for asymmetric learning. 
    more » « less
  4. The convex clustering formulation of Chi and Lange (2015) is revisited. While this formulation can be precisely and efficiently solved, it uses the standard Euclidean metric to measure the distance between the data points and their corresponding cluster centers and hence its performance deteriorates significantly in the presence of outlier features. To address this issue, this paper considers a formulation that combines convex clustering with metric learning. It is shown that: (1) for any given positive definite Mahalanobis distance metric, the problem of convex clustering can be precisely and efficiently solved using the Alternating Direction Method of Multipliers; (2) the problem of learning a positive definite Mahalanobis distance metric admits a closed-form solution; (3) an algorithm that alternates between convex clustering and metric learning can provide a significant performance boost over not only the original convex clustering formulation but also the recently proposed robust convex clustering formulation of Wang et al. (2017). 
    more » « less
  5. Models produced by machine learning, particularly deep neural networks, are state-of-the-art for many machine learning tasks and demonstrate very high prediction accuracy. Unfortunately, these models are also very brittle and vulnerable to specially crafted adversarial examples. Recent results have shown that accuracy of these models can be reduced from close to hundred percent to below 5\% using adversarial examples. This brittleness of deep neural networks makes it challenging to deploy these learning models in security-critical areas where adversarial activity is expected, and cannot be ignored. A number of methods have been recently proposed to craft more effective and generalizable attacks on neural networks along with competing efforts to improve robustness of these learning models. But the current approaches to make machine learning techniques more resilient fall short of their goal. Further, the succession of new adversarial attacks against proposed methods to increase neural network robustness raises doubts about a foolproof approach to robustify machine learning models against all possible adversarial attacks. In this paper, we consider the problem of detecting adversarial examples. This would help identify when the learning models cannot be trusted without attempting to repair the models or make them robust to adversarial attacks. This goal of finding limitations of the learning model presents a more tractable approach to protecting against adversarial attacks. Our approach is based on identifying a low dimensional manifold in which the training samples lie, and then using the distance of a new observation from this manifold to identify whether this data point is adversarial or not. Our empirical study demonstrates that adversarial examples not only lie farther away from the data manifold, but this distance from manifold of the adversarial examples increases with the attack confidence. Thus, adversarial examples that are likely to result into incorrect prediction by the machine learning model is also easier to detect by our approach. This is a first step towards formulating a novel approach based on computational geometry that can identify the limiting boundaries of a machine learning model, and detect adversarial attacks. 
    more » « less