skip to main content


Title: Standards and Best Practices for Monitoring and Benchmarking Insects
Benchmark studies of insect populations are increasingly relevant and needed amid accelerating concern about insect trends in the Anthropocene. The growing recognition that insect populations may be in decline has given rise to a renewed call for insect population monitoring by scientists, and a desire from the broader public to participate in insect surveys. However, due to the immense diversity of insects and a vast assortment of data collection methods, there is a general lack of standardization in insect monitoring methods, such that a sudden and unplanned expansion of data collection may fail to meet its ecological potential or conservation needs without a coordinated focus on standards and best practices. To begin to address this problem, we provide simple guidelines for maximizing return on proven inventory methods that will provide insect benchmarking data suitable for a variety of ecological responses, including occurrence and distribution, phenology, abundance and biomass, and diversity and species composition. To track these responses, we present seven primary insect sampling methods—malaise trapping, light trapping, pan trapping, pitfall trappings, beating sheets, acoustic monitoring, and active visual surveys—and recommend standards while highlighting examples of model programs. For each method, we discuss key topics such as recommended spatial and temporal scales of sampling, important metadata to track, and degree of replication needed to produce rigorous estimates of ecological responses. We additionally suggest protocols for scalable insect monitoring, from backyards to national parks. Overall, we aim to compile a resource that can be used by diverse individuals and organizations seeking to initiate or improve insect monitoring programs in this era of rapid change.  more » « less
Award ID(s):
2033263 1703048
NSF-PAR ID:
10281746
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
8
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘ Challenger 150 ,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14. 
    more » « less
  2. Abstract

    Insect parasitoids may be an exception to the typical biogeographic pattern of increasing species richness at lower latitudes exhibited by most taxa. Evidence for this ‘anomalous’ latitudinal gradient has been derived from observations of hymenopteran parasitoids and it has been argued that other parasitoid groups should show a similar pattern of diversity. Several mechanisms have been proposed to explain this disparity, most notably the nasty host and resource fragmentation hypotheses.

    We review and evaluate these hypotheses with respect to tachinid flies (Diptera: Tachinidae), and bring to the argument evidence from eight trapping surveys from temperate and tropical regions in the Americas including the United States, Costa Rica, and Ecuador. We find no evidence that tachinid fly diversity is lower in the tropics than in the temperate region. Our results, along with other lines of evidence, rather suggest that New World Tachinidae likely conform to the same negative relationship between latitude and richness as their largely phytophagous host taxa.

    We discuss geographic patterns of tachinid diversity in relation to ecological and evolutionary processes, and why they may differ from their hymenopteran parasitoid counterparts. Parasitoid taxa appear to vary strongly in their diversity responses to latitude and we concur with previous researchers that more survey data are necessary to reach strong conclusions about parasitoid latitudinal diversity patterns.

     
    more » « less
  3. Abstract

    Natural history collections (NHC) provide a wealth of information that can be used to understand the impacts of global change on biodiversity. As such, there is growing interest in using NHC data to estimate changes in species' distributions and abundance trends over historic time horizons when contemporary survey data are limited or unavailable.

    However, museum specimens were not collected with the purpose of estimating population trends and thus can exhibit spatiotemporal and collector‐specific biases that can impose severe limitations to using NHC data for evaluating population trajectories.

    Here we review the challenges associated with using museum records to track long‐term insect population trends, including spatiotemporal biases in sampling effort and sparse temporal coverage within and across years. We highlight recent methodological advancements that aim to overcome these challenges and discuss emerging research opportunities.

    Specifically, we examine the potential of integrating museum records and other contemporary data sources (e.g. collected via structured, designed surveys and opportunistic citizen science programs) in a unified analytical framework that accounts for the sampling biases associated with each data source. The emerging field of integrated modelling provides a promising framework for leveraging the wealth of collections data to accurately estimate long‐term trends of insect populations and identify cases where that is not possible using existing data sources.

     
    more » « less
  4. Abstract

    Insect populations are changing rapidly, and monitoring these changes is essential for understanding the causes and consequences of such shifts. However, large‐scale insect identification projects are time‐consuming and expensive when done solely by human identifiers. Machine learning offers a possible solution to help collect insect data quickly and efficiently.

    Here, we outline a methodology for training classification models to identify pitfall trap‐collected insects from image data and then apply the method to identify ground beetles (Carabidae). All beetles were collected by the National Ecological Observatory Network (NEON), a continental scale ecological monitoring project with sites across the United States. We describe the procedures for image collection, image data extraction, data preparation, and model training, and compare the performance of five machine learning algorithms and two classification methods (hierarchical vs. single‐level) identifying ground beetles from the species to subfamily level. All models were trained using pre‐extracted feature vectors, not raw image data. Our methodology allows for data to be extracted from multiple individuals within the same image thus enhancing time efficiency, utilizes relatively simple models that allow for direct assessment of model performance, and can be performed on relatively small datasets.

    The best performing algorithm, linear discriminant analysis (LDA), reached an accuracy of 84.6% at the species level when naively identifying species, which was further increased to >95% when classifications were limited by known local species pools. Model performance was negatively correlated with taxonomic specificity, with the LDA model reaching an accuracy of ~99% at the subfamily level. When classifying carabid species not included in the training dataset at higher taxonomic levels species, the models performed significantly better than if classifications were made randomly. We also observed greater performance when classifications were made using the hierarchical classification method compared to the single‐level classification method at higher taxonomic levels.

    The general methodology outlined here serves as a proof‐of‐concept for classifying pitfall trap‐collected organisms using machine learning algorithms, and the image data extraction methodology may be used for nonmachine learning uses. We propose that integration of machine learning in large‐scale identification pipelines will increase efficiency and lead to a greater flow of insect macroecological data, with the potential to be expanded for use with other noninsect taxa.

     
    more » « less
  5. Abstract

    Large herbivore communities around the world have declined steeply in recent decades. Although excessive bushmeat harvesting is thought to be the primary cause of herbivore declines in many ecosystems, the direct effects of anthropogenic pressures on large herbivore populations remain poorly described in most of the systems experiencing decline. To test the extent to which large herbivores are impacted by ecological and anthropogenic factors in a protected area (PA) thought to be experiencing human‐caused decline, we fit distance sampling models to seven years of data from systematic ground‐based surveys in Kafue National Park (KNP) to estimate the population densities and distributions of 10 species of large herbivores, and to test what factors affect these parameters. Population densities of the ten most abundant large herbivores in KNP were substantially lower than those reported for an ecologically similar PA with less poaching pressure. Low densities were consistent across species and areas, though there was ecologically important variation among species and size classes. Densities of larger‐bodied herbivores were greatly depressed relative to smaller species. This pattern has direct and indirect effects on large carnivore populations, with broad implications for the ecotourism and trophy hunting industries. Statistically and methodologically rigorous methods to test the effects of anthropogenic and environmental variables on density and distribution exist, but are rarely applied to large herbivores. To quantify trends in herbivore populations and evaluate the effectiveness of conservation actions, our results show that distance sampling with stratified ground‐based monitoring is an efficient and effective method. In the Greater Kafue Ecosystem (GKE), continued increases in resource protection are needed to facilitate the recovery of an economically and ecologically important large herbivore guild. More broadly, our results confirm that anthropogenic effects on large herbivore distribution and abundance can be strong over wide areas for all species (particularly the larger members of the guild), even in very large PAs.

     
    more » « less