Quantum Dot downconverters will enable high-resolution, bright, and wide color gamut displays for all display formats. We have developed a method to directly photopattern densely packed InP/ZnS Quantum Dots that achieve an optical density of 2 at sub 10 μm thicknesses while preserving the photoluminescent quantum yield. 
                        more » 
                        « less   
                    
                            
                            Color-complexity enabled exhaustive color-dots identification and spatial patterns testing in images
                        
                    
    
            Our computational developments and analyses on experimental images are designed to evaluate the effectiveness of chemical spraying via unmanned aerial vehicle (UAV). Our evaluations are in accord with the two perspectives of color-complexity: color variety within a color system and color distributional geometry on an image. First, by working within RGB and HSV color systems, we develop a new color-identification algorithm relying on highly associative relations among three color-coordinates to lead us to exhaustively identify all targeted color-pixels. A color-dot is then identified as one isolated network of connected color-pixel. All identified color-dots vary in shapes and sizes within each image. Such a pixel-based computing algorithm is shown robustly and efficiently accommodating heterogeneity due to shaded regions and lighting conditions. Secondly, all color-dots with varying sizes are categorized into three categories. Since the number of small color-dot is rather large, we spatially divide the entire image into a 2D lattice of rectangular. As such, each rectangle becomes a collective of color-dots of various sizes and is classified with respect to its color-dots intensity. We progressively construct a series of minimum spanning trees (MST) as multiscale 2D distributional spatial geometries in a decreasing-intensity fashion. We extract the distributions of distances among connected rectangle-nodes in the observed MST and simulated MSTs generated under the spatial uniformness assumption. We devise a new algorithm for testing 2D spatial uniformness based on a Hierarchical clustering tree upon all involving MSTs. This new tree-based p -value evaluation has the capacity to become exact. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1934568
- PAR ID:
- 10281972
- Editor(s):
- Raja, Gulistan
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 5
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0251258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We report a photolithography‐based technology for patterning quantum dot color converters for micro‐LED displays. A patterning resolution of ~1 µm is achieved. The method can be applied to any color converter materials. Integration of perovskite quantum dots and CdSe/ZnS quantum dots is demonstrated to show the versatility of the technology.more » « less
- 
            In this paper, we present a network-based template for analyzing large-scale dynamic data. Specifically, we present a novel shared-memory parallel algorithm for updating treebased structures, including connected components (CC) and the minimum spanning tree (MST) on dynamic networks. We propose a rooted tree-based data structure to store the edges that are most relevant to the analysis. Our algorithm is based on updating the information stored in this rooted tree.In this paper, we present a network-based template for analyzing large-scale dynamic data. Specifically, we present a novel shared-memory parallel algorithm for updating tree-based structures, including connected components (CC) and the minimum spanning tree (MST) on dynamic networks. We propose a rooted tree-based data structure to store the edges that are most relevant to the analysis. Our algorithm is based on updating the information stored in this rooted tree.more » « less
- 
            Given an undirected, weighted graph, the minimum spanning tree (MST)is a tree that connects all of the vertices of the graph with minimum sum of edge weights. In real world applications, network designers often seek to quickly find a replacement edge for each edge in the MST. For example, when a traffic accident closes a road in a transportation network, or a line goes down in a communication network, the replacement edge may reconnect the MST at lowest cost. In the paper, we consider the case of finding the lowest cost replacement edge for each edge of the MST. A previous algorithm by Tarjan takes O{m lpha(m, n)} time and space, where $lpha(m, n)$ is the inverse Ackermann’s function. Given the MST and sorted non-tree edges, our algorithm is the first practical algorithm that runs in O(m+n) time and O(m+n) space to find all replacement edges. Additionally, since the most vital edge is the tree edge whose removal causes the highest cost, our algorithm finds it in linear time.more » « less
- 
            Abstract Advanced anti‐counterfeiting and authentication approaches are in urgent need of the rapidly digitizing society. Physically unclonable functions (PUFs) attract significant attention as a new‐generation security primitive. The challenge is design and generation of multi‐color PUFs that can be universally applicable to objects of varied composition, geometry, and rigidity. Herein, tattoo‐like multi‐color fluorescent PUFs are proposed and demonstrated. Multi‐channel optical responses are created by electrospraying of polymers that contain semiconductor nanocrystals with precisely defined photoluminescence. The universality of this approach enables the use of dot and dot‐in‐rod geometries with unique optical characteristics. The fabricated multi‐color PUFs are then transferred to a target object by using a temporary tattoo approach. Digitized keys generated from the red, green and blue fluorescence channels facilitate large encoding capacity and rapid authentication. Feature matching algorithms complement the authentication by direct image comparison, effectively alleviating constraints associated with imaging conditions. The strategy that paves the way for the development of practical, cost‐effective, and secure anticounterfeiting systems is presented.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    