skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Validation of a Two-Surface Plasticity Model for Soil Liquefaction Analysis
Constitutive modeling of granular materials such as sands, non-plastic silts, and gravels has been significantly advanced in the past three decades. Several new constitutive models have been proposed and calibrated to simulate the results of various laboratory element tests. Due to this progress and owing to the surge of interest in geotechnical engineering community to use well-documented constitutive models in major geotechnical projects, a more thorough evaluation of these models is necessary. Performance of the current models should be particularly evaluated in the simulation of boundary value problems where stress/strain paths are much more complex than the element tests performed in laboratory. Such validation efforts will be an important step towards the use of these models in practice. This paper presents the results of an extensive validation study aimed at assessing the capabilities and limitations of a two-surface plasticity model for sands in two selected boundary value problems, i.e. lateral spreading of mildly sloping liquefiable grounds. The results of a large number of centrifuge tests conducted during the course of four consecutive international projects known as Liquefaction Experiments and Analysis Project (LEAP) are used in this validation study. The capabilities and limitations of the two-surface plasticity model, initially calibrated against element tests, will be carefully assessed by comparing the numerical simulations with the results of the centrifuge tests from recent LEAP projects.  more » « less
Award ID(s):
1635524
PAR ID:
10282208
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference of the International Association for Computer Methods and Advances in Geomechanics IACMAG 2021: Challenges and Innovations in Geomechanics
Volume:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Constitutive relations used to describe the stress-strain-strength behavior of soils in cyclic loading are known to play a critical role on our ability to predict the response of geo-structures to seismic loading. The extent and intricacies of this role, however, are highly problem-dependent and often difficult to discern from the effects of other ingredients of a numerical simulation. Moreover, realistic assessments of constitutive models and numerical analysis techniques require detailed comparisons of their performances with reliable experimental observations. The experimental data that have been produced in the course of recent Liquefaction Experiments and Analysis Projects (LEAP-2015 and LEAP-2017) provide an opportunity for a more thorough assessment of the capabilities and limitations of constitutive models for sands over a wide range of strains. The LEAP experimental data along with a large number of cyclic element tests are used here to explore the performance of several constitutive models in numerical simulation of soil liquefaction and its effects on lateral spreading of mildly sloping grounds. 
    more » « less
  2. Constitutive relations used to describe the stress-strain-strength behavior of soils in cyclic loading are known to play a critical role on our ability to predict the response of geo-structures to seismic loading. The extent and intricacies of this role, however, are highly problem-dependent and often difficult to discern from the effects of other ingredients of a numerical simulation. Moreover, realistic assessments of constitutive models and numerical analysis techniques require detailed comparisons of their performances with reliable experimental observations. The experimental data that have been produced in the course of recent Liquefaction Experiments and Analysis Projects (LEAP-2015 and LEAP-2017) provide an opportunity for a more thorough assessment of the capabilities and limitations of constitutive models for sands over a wide range of strains. The LEAP experimental data along with a large number of cyclic element tests are used here to explore the performance of several constitutive models in numerical simulation of soil liquefaction and its effects on lateral spreading of mildly sloping grounds. 
    more » « less
  3. Cyclic direct simple shear tests were conducted to study the liquefaction-induced permanent deformations caused by non-uniform shear stress waves which mimic the acceleration time histories used in the LEAP centrifuge experiments. The experiments reported here were used as the basis for evaluation of a number of leading constitutive models for sands during LEAP-2020 type-A prediction exercise. The dataset may be used in the assessment of the performance of current and future constitutive models for sands. 
    more » « less
  4. This project documents an extensive series of laboratory tests performed at the George Washington University to characterize the basic properties and stress-strain-strength response of Ottawa F-65 sand in cyclic loading conditions. The results of these experiments as well the monotonic and cyclic triaxial tests conducted in LEAP-2015 project were provided to all the numerical simulation teams who participated in the LEAP-2017 prediction exercise. The simulation teams used these results to calibrate the constitutive models that they planned to use in numerical simulations of LEAP-2017 centrifuge tests. 
    more » « less
  5. This paper investigates and presents the numerical modeling and validation of the response of a uniform clean sand using monotonic and cyclic laboratory tests as well as a centrifuge model test comprised of a submerged slope. The dynamic response of the sand is modeled using a critical state compatible, stress ratio-based, bounding surface plasticity constitutive model (PM4Sand), implemented in the commercial finite-difference platform FLAC, and PM4Sand’s performance is evaluated against a comprehensive testing program comprised of laboratory data and a well-instrumented centrifuge model test. Three different calibrations informed by the lab and centrifuge data are performed and the goodness of the predictions is discussed. Conclusions are drawn with regards to the performance of the simulations against the laboratory and centrifuge data, and recommendations about the calibration of the model are provided. 
    more » « less