skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genome-Scale Profiling Reveals Noncoding Loci Carry Higher Proportions of Concordant Data
Abstract Many evolutionary relationships remain controversial despite whole-genome sequencing data. These controversies arise, in part, due to challenges associated with accurately modeling the complex phylogenetic signal coming from genomic regions experiencing distinct evolutionary forces. Here, we examine how different regions of the genome support or contradict well-established relationships among three mammal groups using millions of orthologous parsimony-informative biallelic sites (PIBS) distributed across primate, rodent, and Pecora genomes. We compared PIBS concordance percentages among locus types (e.g. coding sequences (CDS), introns, intergenic regions), and contrasted PIBS utility over evolutionary timescales. Sites derived from noncoding sequences provided more data and proportionally more concordant sites compared with those from CDS in all clades. CDS PIBS were also predominant drivers of tree incongruence in two cases of topological conflict. PIBS derived from most locus types provided surprisingly consistent support for splitting events spread across the timescales we examined, although we find evidence that CDS and intronic PIBS may, respectively and to a limited degree, inform disproportionately about older and younger splits. In this era of accessible wholegenome sequence data, these results:1) suggest benefits to more intentionally focusing on noncoding loci as robust data for tree inference and 2) reinforce the importance of accurate modeling, especially when using CDS data.  more » « less
Award ID(s):
1942273
PAR ID:
10282230
Author(s) / Creator(s):
;
Editor(s):
Townsend, Jeffrey
Date Published:
Journal Name:
Molecular Biology and Evolution
Volume:
38
Issue:
6
ISSN:
1537-1719
Page Range / eLocation ID:
2306 to 2318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruane, Sara (Ed.)
    Abstract Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger data sets both increase statistical confidence and uncover significant discordance, suggests that understanding sources of conflict is important for accurate reconstruction of evolutionary history. We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes, and amphisbaenians. We collected an average of 5103 loci for 91 species of squamates that span higher-level diversity within the clade, which we augmented with publicly available sequences for an additional 17 taxa. Using a locus-by-locus approach, we evaluated support for alternative topologies at 17 contentious nodes in the phylogeny. We identified shared properties of conflicting loci, finding that rate and compositional heterogeneity drives discordance between gene trees and species tree and that conflicting loci rarely overlap across contentious nodes. Finally, by comparing our tests of nodal conflict to previous phylogenomic studies, we confidently resolve 9 of the 17 problematic nodes. We suggest this locus-by-locus and node-by-node approach can build consensus on which topological resolutions remain uncertain in phylogenomic studies of other contentious groups. [Anchored hybrid enrichment (AHE); gene tree conflict; molecular evolution; phylogenomic concordance; target capture; ultraconserved elements (UCE).] 
    more » « less
  2. Comprising 501 genera and around 14,000 species, Papilionoideae is not only the largest subfamily of Fabaceae (Leguminosae; legumes), but also one of the most extraordinarily diverse clades among angiosperms. Papilionoids are a major source of food and forage, are ecologically successful in all major biomes, and display dramatic variation in both floral architecture and plastid genome (plastome) structure. Plastid DNA-based phylogenetic analyses have greatly improved our understanding of relationships among the major groups of Papilionoideae, yet the backbone of the subfamily phylogeny remains unresolved. In this study, we sequenced and assembled 39 new plastomes that are covering key genera representing the morphological diversity in the subfamily. From 244 total taxa, we produced eight datasets for maximum likelihood (ML) analyses based on entire plastomes and/or concatenated sequences of 77 protein-coding sequences (CDS) and two datasets for multispecies coalescent (MSC) analyses based on individual gene trees. We additionally produced a combined nucleotide dataset comprising CDS plus matK gene sequences only, in which most papilionoid genera were sampled. A ML tree based on the entire plastome maximally supported all of the deep and most recent divergences of papilionoids (223 out of 236 nodes). The Swartzieae, ADA (Angylocalyceae, Dipterygeae, and Amburaneae), Cladrastis, Andira, and Exostyleae clades formed a grade to the remainder of the Papilionoideae, concordant with nine ML and two MSC trees. Phylogenetic relationships among the remaining five papilionoid lineages (Vataireoid, Dermatophyllum , Genistoid s.l., Dalbergioid s.l., and Baphieae + Non-Protein Amino Acid Accumulating or NPAAA clade) remained uncertain, because of insufficient support and/or conflicting relationships among trees. Our study fully resolved most of the deep nodes of Papilionoideae, however, some relationships require further exploration. More genome-scale data and rigorous analyses are needed to disentangle phylogenetic relationships among the five remaining lineages. 
    more » « less
  3. null (Ed.)
    Abstract Target enrichment (such as Hyb-Seq) is a well-established high throughput sequencing method that has been increasingly used for phylogenomic studies. Unfortunately, current widely used pipelines for analysis of target enrichment data do not have a vigorous procedure to remove paralogs in target enrichment data. In this study, we develop a pipeline we call Putative Paralogs Detection (PPD) to better address putative paralogs from enrichment data. The new pipeline is an add-on to the existing HybPiper pipeline, and the entire pipeline applies criteria in both sequence similarity and heterozygous sites at each locus in the identification of paralogs. Users may adjust the thresholds of sequence identity and heterozygous sites to identify and remove paralogs according to the level of phylogenetic divergence of their group of interest. The new pipeline also removes highly polymorphic sites attributed to errors in sequence assembly and gappy regions in the alignment. We demonstrated the value of the new pipeline using empirical data generated from Hyb-Seq and the Angiosperm 353 kit for two woody genera Castanea (Fagaceae, Fagales) and Hamamelis (Hamamelidaceae, Saxifragales). Comparisons of datasets showed that the PPD identified many more putative paralogs than the popular method HybPiper. Comparisons of tree topologies and divergence times showed evident differences between data from HybPiper and data from our new PPD pipeline. We further evaluated the accuracy and error rates of PPD by BLAST mapping of putative paralogous and orthologous sequences to a reference genome sequence of Castanea mollissima. Compared to HybPiper alone, PPD identified substantially more paralogous gene sequences that mapped to multiple regions of the reference genome (31 genes for PPD compared with 4 genes for HybPiper alone). In conjunction with HybPiper, paralogous genes identified by both pipelines can be removed resulting in the construction of more robust orthologous gene datasets for phylogenomic and divergence time analyses. Our study demonstrates the value of Hyb-Seq with data derived from the Angiosperm 353 probe set for elucidating species relationships within a genus, and argues for the importance of additional steps to filter paralogous genes and poorly aligned regions (e.g., as occur through assembly errors), such as our new PPD pipeline described in this study. 
    more » « less
  4. Abstract Methods for rapidly inferring the evolutionary history of species or populations with genome-wide data are progressing, but computational constraints still limit our abilities in this area. We developed an alignment-free method to infer genome-wide phylogenies and implemented it in the Python package TopicContml. The method uses probabilistic topic modeling (specifically, Latent Dirichlet Allocation) to extract topic frequencies from k-mers, which are derived from multilocus DNA sequences. These extracted frequencies then serve as an input for the program Contml in the PHYLIP package, which is used to generate a species tree. We evaluated the performance of TopicContml on simulated datasets with gaps and three biological datasets: 1) 14 DNA sequence loci from two Australian bird species distributed across nine populations, 2) 5162 loci from 80 mammal species, and 3) raw, unaligned, nonorthologous PacBio sequences from 12 bird species. We also assessed the uncertainty of the estimated relationships among clades using a bootstrap procedure. Our empirical results and simulated data suggest that our method is efficient and statistically robust. 
    more » « less
  5. Abstract Insertions and deletions (Indels) represent one of the major variation types in the human genome and have been implicated in diseases including cancer. To study the features of somatic indels in different cancer genomes, we investigated the indels from two large samples of cancer types: invasive breast carcinoma (BRCA) and lung adenocarcinoma (LUAD). Besides mapping somatic indels in both coding and untranslated regions (UTRs) from the cancer whole exome sequences, we investigated the overlap between these indels and transcription factor binding sites (TFBSs), the key elements for regulation of gene expression that have been found in both coding and non-coding sequences. Compared to the germline indels in healthy genomes, somatic indels contain more coding indels with higher than expected frame-shift (FS) indels in cancer genomes. LUAD has a higher ratio of deletions and higher coding and FS indel rates than BRCA. More importantly, these somatic indels in cancer genomes tend to locate in sequences with important functions, which can affect the core secondary structures of proteins and have a bigger overlap with predicted TFBSs in coding regions than the germline indels. The somatic CDS indels are also enriched in highly conserved nucleotides when compared with germline CDS indels. 
    more » « less