skip to main content


Title: Point Cloud Segmentation based on Hypergraph Spectral Clustering
Hypergraph spectral analysis has emerged as an effective tool processing complex data structures in data analysis. The surface of a three-dimensional (3D) point cloud and the multilateral relationship among their points can be naturally captured by the high-dimensional hyperedges. This work investigates the power of hypergraph spectral analysis in unsupervised segmentation of 3D point clouds. We estimate and order the hypergraph spectrum from observed point cloud coordinates. By trimming the redundancy from the estimated hypergraph spectral space based on spectral component strengths, we develop a clustering-based segmentation method. We apply the proposed method to various point clouds, and analyze their respective spectral properties. Our experimental results demonstrate the effectiveness and efficiency of the proposed segmentation method.  more » « less
Award ID(s):
1934568
NSF-PAR ID:
10282262
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 Information Theory and Applications Workshop (ITA)
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 3D LiDAR scanners are playing an increasingly important role in autonomous driving as they can generate depth information of the environment. However, creating large 3D LiDAR point cloud datasets with point-level labels requires a significant amount of manual annotation. This jeopardizes the efficient development of supervised deep learning algorithms which are often data-hungry. We present a framework to rapidly create point clouds with accurate pointlevel labels from a computer game. To our best knowledge, this is the first publication on LiDAR point cloud simulation framework for autonomous driving. The framework supports data collection from both auto-driving scenes and user-configured scenes. Point clouds from auto-driving scenes can be used as training data for deep learning algorithms, while point clouds from user-configured scenes can be used to systematically test the vulnerability of a neural network, and use the falsifying examples to make the neural network more robust through retraining. In addition, the scene images can be captured simultaneously in order for sensor fusion tasks, with a method proposed to do automatic registration between the point clouds and captured scene images. We show a significant improvement in accuracy (+9%) in point cloud segmentation by augmenting the training dataset with the generated synthesized data. Our experiments also show by testing and retraining the network using point clouds from user-configured scenes, the weakness/blind spots of the neural network can be fixed. 
    more » « less
  2. Medical image analysis using deep learning has recently been prevalent, showing great performance for various downstream tasks including medical image segmentation and its sibling, volumetric image segmentation. Particularly, a typical volumetric segmentation network strongly relies on a voxel grid representation which treats volumetric data as a stack of individual voxel `slices', which allows learning to segment a voxel grid to be as straightforward as extending existing image-based segmentation networks to the 3D domain. However, using a voxel grid representation requires a large memory footprint, expensive test-time and limiting the scalability of the solutions. In this paper, we propose Point-Unet, a novel method that incorporates the eciency of deep learning with 3D point clouds into volumetric segmentation. Our key idea is to rst predict the regions of interest in the volume by learning an attentional probability map, which is then used for sampling the volume into a sparse point cloud that is subsequently segmented using a point-based neural network. We have conducted the experiments on the medical volumetric segmentation task with both a small-scale dataset Pancreas and large-scale datasets BraTS18, BraTS19, and BraTS20 challenges. A comprehensive benchmark on di erent metrics has shown that our context-aware Point-Unet robustly outperforms the SOTA voxel-based networks at both accuracies, memory usage during training, and time consumption during testing. 
    more » « less
  3. Surpervoxels are becoming increasingly popular in many point cloud processing applications. However, few methods have been devised specifically for generating compact supervoxels from unstructured three-dimensional (3D) point clouds. In this study, we aimed to generate high quality over-segmentation of point clouds. We propose a merge-swap optimization framework that solves any supervoxel generation problem formulated in energy minimization. In particular, we tailored an energy function that explicitly encourages regular and compact supervoxels with adaptive size control considering local geometric information of point clouds. We also provide two acceleration techniques to reduce the computational overhead. The performance of the proposed merge-swap optimization approach is superior to that of previous work in terms of thorough optimization, computational efficiency, and practical applicability to incorporating control of other properties of supervoxels. The experiments show that our approach produces supervoxels with better segmentation quality than two state-of-the-art methods on three public datasets. 
    more » « less
  4. The rapid development of three-dimensional (3D) acquisition technology based on 3D sensors provides a large volume of data, which are often represented in the form of point clouds. Point cloud representation can preserve the original geometric information along with associated attributes in a 3D space. Therefore, it has been widely adopted in many scene-understanding-related applications such as virtual reality (VR) and autonomous driving. However, the massive amount of point cloud data aggregated from distributed 3D sensors also poses challenges for secure data collection, management, storage, and sharing. Thanks to the characteristics of decentralization and security, Blockchain has great potential to improve point cloud services and enhance security and privacy preservation. Inspired by the rationales behind the software-defined network (SDN) technology, this paper envisions SAUSA, a Blockchain-based authentication network that is capable of recording, tracking, and auditing the access, usage, and storage of 3D point cloud datasets in their life-cycle in a decentralized manner. SAUSA adopts an SDN-inspired point cloud service architecture, which allows for efficient data processing and delivery to satisfy diverse quality-of-service (QoS) requirements. A Blockchain-based authentication framework is proposed to ensure security and privacy preservation in point cloud data acquisition, storage, and analytics. Leveraging smart contracts for digitizing access control policies and point cloud data on the Blockchain, data owners have full control of their 3D sensors and point clouds. In addition, anyone can verify the authenticity and integrity of point clouds in use without relying on a third party. Moreover, SAUSA integrates a decentralized storage platform to store encrypted point clouds while recording references of raw data on the distributed ledger. Such a hybrid on-chain and off-chain storage strategy not only improves robustness and availability, but also ensures privacy preservation for sensitive information in point cloud applications. A proof-of-concept prototype is implemented and tested on a physical network. The experimental evaluation validates the feasibility and effectiveness of the proposed SAUSA solution. 
    more » « less
  5. Abstract

    Automated, ship‐board flow cytometers provide high‐resolution maps of phytoplankton composition over large swaths of the world's oceans. They therefore pave the way for understanding how environmental conditions shape community structure. Identification of community changes along a cruise transect commonly segments the data into distinct regions. However, existing segmentation methods are generally not applicable to flow cytometry data, as these data are recorded as ‘point cloud’ data, with hundreds or thousands of particles measured during each time interval. Moreover, nonparametric segmentation methods that do not rely on prior knowledge of the number of species are desirable to map community shifts.

    We present CytoSegmenter, a kernel‐based change‐point estimation method for segmenting point cloud data. Our method allows us to represent and summarize a point cloud of data points by a single element in a Hilbert space. The change‐point locations can be found using a fast dynamic programming algorithm.

    Through an analysis of 12 cruises, we demonstrate that CytoSegmenter allows us to locate abrupt changes in phytoplankton community structure. We show that the changes in community structure generally coincide with changes in the temperature and salinity of the ocean. We also illustrate how the main parameter of CytoSegmenter can be easily calibrated using limited auxiliary annotated data.

    CytoSegmenter is generally applicable for segmenting series of point cloud data from any domain. Moreover, it readily scales to thousands of point clouds, each containing thousands of points. In the context of flow cytometry data collected during research cruises, it does not require prior clustering of particles to define taxa labels, eliminating a potential source of error. This represents an important advance in automating the analysis of large datasets now emerging in biological oceanography and other fields. It also allows for the approach to be applied during research cruises.

     
    more » « less