skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Which methods are the most effective in enabling novice users to participate in ontology creation? A usability study
Abstract Producing findable, accessible, interoperable and reusable (FAIR) data cannot be accomplished solely by data curators in all disciplines. In biology, we have shown that phenotypic data curation is not only costly, but it is burdened with inter-curator variation. We intend to propose a software platform that would enable all data producers, including authors of scientific publications, to produce ontologized data at the time of publication. Working toward this goal, we need to identify ontology construction methods that are preferred by end users. Here, we employ two usability studies to evaluate effectiveness, efficiency and user satisfaction with a set of four methods that allow an end user to add terms and their relations to an ontology. Thirty-three participants took part in a controlled experiment where they evaluated the four methods (Quick Form, Wizard, WebProtégé and Wikidata) after watching demonstration videos and completing a hands-on task. Another think-aloud study was conducted with three professional botanists. The efficiency effectiveness and user confidence in the methods are clearly revealed through statistical and content analyses of participants’ comments. Quick Form, Wizard and WebProtégé offer distinct strengths that would benefit our author-driven FAIR data generation system. Features preferred by the participants will guide the design of future iterations.  more » « less
Award ID(s):
1661485
PAR ID:
10282433
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Database
Volume:
2021
ISSN:
1758-0463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It takes great effort to manually or semi-automatically convert free-text phenotype narratives (e.g., morphological descriptions in taxonomic works) to a computable format before they can be used in large-scale analyses. We argue that neither a manual curation approach nor an information extraction approach based on machine learning is a sustainable solution to produce computable phenotypic data that are FAIR (Findable, Accessible, Interoperable, Reusable) (Wilkinson et al. 2016). This is because these approaches do not scale to all biodiversity, and they do not stop the publication of free-text phenotypes that would need post-publication curation. In addition, both manual and machine learning approaches face great challenges: the problem of inter-curator variation (curators interpret/convert a phenotype differently from each other) in manual curation, and keywords to ontology concept translation in automated information extraction, make it difficult for either approach to produce data that are truly FAIR. Our empirical studies show that inter-curator variation in translating phenotype characters to Entity-Quality statements (Mabee et al. 2007) is as high as 40% even within a single project. With this level of variation, curated data integrated from multiple curation projects may still not be FAIR. The key causes of this variation have been identified as semantic vagueness in original phenotype descriptions and difficulties in using standardized vocabularies (ontologies). We argue that the authors describing characters are the key to the solution. Given the right tools and appropriate attribution, the authors should be in charge of developing a project's semantics and ontology. This will speed up ontology development and improve the semantic clarity of the descriptions from the moment of publication. In this presentation, we will introduce the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists, which consists of three components: a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. Fig. 1 shows the system diagram of the platform. The presentation will consist of: a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. The software modules currently incorporated in Character Recorder and Conflict Resolver have undergone formal usability studies. We are actively recruiting Carex experts to participate in a 3-day usability study of the entire system of the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists. Participants will use the platform to record 100 characters about one Carex species. In addition to usability data, we will collect the terms that participants submit to the underlying ontology and the data related to conflict resolution. Such data allow us to examine the types and the quantities of logical conflicts that may result from the terms added by the users and to use Discrete Event Simulation models to understand if and how term additions and conflict resolutions converge. We look forward to a discussion on how the tools (Character Recorder is online at http://shark.sbs.arizona.edu/chrecorder/public) described in our presentation can contribute to producing and publishing FAIR data in taxonomic studies. 
    more » « less
  2. We conducted a 2x2 Wizard of Oz between-subject user study with sixteen healthy older adults. We investigated how to make social robots converse more naturally and reciprocally through unstructured conversation. We varied the level of interaction by changing the level of verbal and nonverbal communication the robot provided. Participants interacted with the robot for eight sessions engaging in an unstructured conversation. These conversations lasted thirty minutes to an hour. This paper will evaluate four questions from the post-interaction survey individuals completed after each session with the robot. The questions include: (i) I had fun talking to the robot; (ii) I felt I had a meaningful conversation; (iii) I was engaged the whole interaction; and (iv) I would consider the robot my friend. All participants reported they were engaged, had a meaningful conversation, and had fun during all eight sessions. Seven individuals felt the robot was their friend. 
    more » « less
  3. A fundamental challenge of shared autonomy is to use high-DoF robots to assist, rather than hinder, humans by first inferring user intent and then empowering the user to achieve their intent. Although successful, prior methods either rely heavily on a priori knowledge of all possible human intents or require many demonstrations and interactions with the human to learn these intents before being able to assist the user. We propose and study a zero-shot, vision-only shared autonomy (VOSA) framework designed to allow robots to use end-effector vision to estimate zero-shot human intents in conjunction with blended control to help humans accomplish manipulation tasks with unknown and dynamically changing object locations. To demonstrate the effectiveness of our VOSA framework, we instantiate a simple version of VOSA on a Kinova Gen3 manipulator and evaluate our system by conducting a user study on three tabletop manipulation tasks. The performance of VOSA matches that of an oracle baseline model that receives privileged knowledge of possible human intents while also requiring significantly less effort than unassisted teleoperation. In more realistic settings, where the set of possible human intents is fully or partially unknown, we demonstrate that VOSA requires less human effort and time than baseline approaches while being preferred by a majority of the participants. Our results demonstrate the efficacy and efficiency of using off-the-shelf vision algorithms to enable flexible and beneficial shared control of a robot manipulator. Code and videos available here: https://sites.google.com/view/zeroshot-sharedautonomy/home 
    more » « less
  4. Many modern end-user development environments support one of two visual modalities: block-based programming or data-flow programming. In this work, we investigate the trade-offs between the two modalities in the context of robotics tasks. These often contain both aspects that are better solved with blocks and others that best fit data-flow programming. To address this style of task, we present and discuss two novel programming environment prototypes, one purely block-based and one a hybrid of blocks and data-flow programming. We compare the designs through a controlled experiment with 113 end-user participants, in which we asked them to solve programming and program comprehension tasks using one of the two environments. We find that participants preferred the hybrid environment in direct comparison, but performed better across all tasks and also reported higher usability ratings for blocks. 
    more » « less
  5. We present a prototype virtual reality user interface for robot teleoperation that supports high-level specification of 3D object positions and orientations in remote assembly tasks. Users interact with virtual replicas of task objects. They asynchronously assign multiple goals in the form of 6DoF destination poses without needing to be familiar with specific robots and their capabilities, and manage and monitor the execution of these goals. The user interface employs two different spatiotemporal visualizations for assigned goals: one represents all goals within the user’s workspace (Aggregated View), while the other depicts each goal within a separate world in miniature (Timeline View). We conducted a user study of the interface without the robot system to compare how these visualizations affect user efficiency and task load. The results show that while the Aggregated View helped the participants finish the task faster, the participants preferred the Timeline View. 
    more » « less