skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of Biases in Warm-Season WRF Forecasts in North and South America
Ensemble forecasts using the WRF Model at 20-km grid spacing with varying parameterizations are used to investigate and compare precipitation and atmospheric profile forecast biases in North and South America. By verifying a 19-member ensemble against NCEP Stage-IV precipitation analyses, it is shown that the cumulus parameterization (CP), in addition to precipitation amount and season, had the largest influence on precipitation forecast skill in North America during 2016–17. Verification of an ensemble subset against operational radiosondes in North and South America finds that forecasts in both continents feature a substantial midlevel dry bias, particularly at 700 hPa, during the warm season. Case-by-case analysis suggests that large midlevel error is associated with mesoscale convective systems (MCSs) east of the high terrain and westerly subsident flow from the Rocky and Andes Mountains in North and South America. However, error in South America is consistently greater than North America. This is likely attributed to the complex terrain and higher average altitude of the Andes relative to the Rockies, which allow for a deeper low-level jet and long-lasting MCSs, both of which 20-km simulations struggle to resolve. In the wake of data availability from the RELAMPAGO field campaign, the authors hope that this work motivates further comparison of large precipitating systems in North and South America, given their high impact in both continents.  more » « less
Award ID(s):
1661657
PAR ID:
10282439
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Weather and forecasting
Volume:
36(3)
ISSN:
1520-0434
Page Range / eLocation ID:
979-1001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Ensemble forecasts using the WRF Model at 20-km grid spacing with varying parameterizations are used to investigate and compare precipitation and atmospheric profile forecast biases in North and South America. By verifying a 19-member ensemble against NCEP Stage IV precipitation analyses, it is shown that the cumulus parameterization (CP), in addition to precipitation amount and season, had the largest influence on precipitation forecast skill in North America during 2016-2017. Verification of an ensemble subset against operational radiosondes in North and South America finds that forecasts in both continents feature a substantial mid-level dry bias, particularly at 700 hPa, during the warm season. Case-by-case analysis suggests that large mid-level error is associated with mesoscale convective systems (MCSs) east of the high terrain and westerly subsident flow from the Rocky and Andes Mountains in North and South America. However, error in South America is consistently greater than North America. This is likely attributed to the complex terrain and higher average altitude of the Andes relative to the Rockies, which allow for a deeper low-level jet and long-lasting MCSs, both of which 20-km simulations struggle to resolve. In the wake of data availability from the RELAMPAGO field campaign, the authors hope that this work motivates further comparison of large precipitating systems in North and South America, given their high impact in both continents. 
    more » « less
  2. null (Ed.)
    Subtropical South America (SSA) east of the Andes Mountains is a global hotspot for mesoscale convective systems (MCSs). Wide convective cores (WCCs) are typically embedded within mature MCSs, contribute over 40% of SSA’s warm-season rainfall, and are often associated with severe weather. Prior analysis of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data identified WCCs in SSA and associated synoptic conditions during austral summer. As WCCs also occur during the austral spring, this study uses the 16-yr TRMM PR and ERA5 datasets to compare anomalies in environmental conditions between austral spring (SON) and summer (DJF) for the largest and smallest WCCs in SSA. During both seasons, large WCCs are associated with an anomalous midlevel trough that slowly crosses the Andes Mountains and a northerly South American low-level jet (SALLJ) over SSA, though the SON trough and SALLJ anomalies are stronger and located farther northeastward than in DJF. A synoptic pattern evolution resembling large WCC environments is illustrated through a multiday case during the RELAMPAGO field campaign (10–13 November 2018). Unique high-temporal-resolution soundings showed strong midlevel vertical wind shear associated with this event, induced by the juxtaposition of the northerly SALLJ and southerly near-surface flow. It is hypothesized that the Andes help create a quasi-stationary trough–ridge pattern such that favorable synoptic conditions for deep convection persist for multiple days. For the smallest WCCs, anomalously weaker synoptic-scale forcing was present compared to the largest events, especially for DJF, pointing to future work exploring MCS formation under weaker synoptic conditions. 
    more » « less
  3. null (Ed.)
    Abstract Subtropical South America (SSA) east of the Andes Mountains is a global hotspot for mesoscale convective systems (MCSs). Wide convective cores (WCCs) are typically embedded within mature MCSs, contribute over 40% of SSA’s warm-season rainfall, and are often associated with severe weather. Prior analysis of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data identified WCCs in SSA and associated synoptic conditions during austral summer. As WCCs also occur during the austral spring, this study uses the 16-year TRMM PR dataset and ERA5 reanalysis to compare anomalies in environmental conditions between austral spring (SON) and summer (DJF) for the largest and smallest WCCs in SSA. During both seasons, large WCCs are associated with an anomalous mid-level trough that slowly crosses the Andes Mountains and a northerly South American low-level jet (SALLJ) over SSA, though the SON trough and SALLJ anomalies are stronger and located farther northeastward than in DJF. A synoptic pattern evolution resembling large WCC environments is illustrated through a multi-day case during the RELAMPAGO field campaign (10-13 November 2018). Unique high-temporal resolution soundings showed strong mid-level vertical wind shear associated with this event, induced by the juxtaposition of the northerly SALLJ and southerly near-surface flow. It is hypothesized that the Andes help create a quasi-stationary trough/ridge pattern such that favorable synoptic conditions for deep convection persist for multiple days. For the smallest WCCs, anomalously weaker synoptic-scale forcing was present compared to the largest events, especially for DJF, pointing to future work exploring MCS formation under weaker synoptic conditions. 
    more » « less
  4. Forecasts of heavy precipitation delivered by atmospheric rivers (ARs) are becoming increasingly important for both flood control and water supply management in reservoirs across California. This study examines the hypothesis that medium-range forecasts of heavy precipitation at the basin scale exhibit recurrent spatial biases that are driven by mesoscale and synoptic-scale features of associated AR events. This hypothesis is tested for heavy precipitation events in the Sacramento River basin using 36 years of NCEP medium-range reforecasts from 1984 to 2019. For each event we cluster precipitation forecast error across western North America for lead times ranging from 1 to 15 days. Integrated vapor transport (IVT), 500-hPa geopotential heights, and landfall characteristics of ARs are composited across clusters and lead times to diagnose the causes of precipitation forecast biases. We investigate the temporal evolution of forecast error to characterize its persistence across lead times, and explore the accuracy of forecasted IVT anomalies across different domains of the North American west coast during heavy precipitation events in the Sacramento basin. Our results identify recurrent spatial patterns of precipitation forecast error consistent with errors of forecasted synoptic-scale features, especially at long (5–15 days) leads. Moreover, we find evidence that forecasts of AR landfalls well outside of the latitudinal bounds of the Sacramento basin precede heavy precipitation events within the basin. These results suggest the potential for using medium-range forecasts of large-scale climate features across the Pacific–North American sector, rather than just local forecasts of basin-scale precipitation, when designing forecast-informed reservoir operations. 
    more » « less
  5. Abstract Based on observational estimates and global ocean eddy-resolving coupled retrospective initialized predictions, we show that Kuroshio Extension variability affects rainfall variability along the west coast of North America. We show that the teleconnection between the current undulations and downstream rainfall can lead to improved subseasonal to seasonal predictions of precipitation over California, and we demonstrate that capturing these teleconnections requires coupled systems with sufficient ocean resolution (i.e., eddy-resolving), especially over time scales longer than one season. The improved forecast skill is diagnosed in terms of 35 years of retrospective initialized ensemble forecasts with an ocean eddy-resolving and an ocean eddy-parameterized coupled model. Not only does the ocean eddy-resolving model show sensitivity to Kuroshio Extension variability in terms of western North America precipitation, but the ocean eddy-resolving forecasts also show improved forecast skill compared to the ocean eddy-parameterized model. The ocean eddy-parameterized coupled model shows no sensitivity to Kuroshio Extension variability. We also find near-decadal variability associated with a progression of a lower-tropospheric height dipole around the North Pacific and how these height anomalies lead to wind-driven Rossby waves that affect the eddy activity in the Kuroshio Extension with a time lag on the order of four years. This decadal-scale variability (~10 years) opens the possibility of multiyear predictability of western North American rainfall. 
    more » « less