skip to main content


Title: The effects of climate change on hailstorms
Hailstorms are dangerous and costly phenomena that are expected to change in response to a warming climate. In this Review, we summarize current knowledge of climate change effects on hailstorms. As a result of anthropogenic warming, it is generally anticipated that low-level moisture and convective instability will increase, raising hailstorm likelihood and enabling the formation of larger hailstones; the melting height will rise, enhancing hail melt and increasing the average size of surviving hailstones; and vertical wind shear will decrease overall, with limited influence on the overall hailstorm activity, owing to a predominance of other factors. Given geographic differences and offsetting interactions in these projected environmental changes, there is spatial heterogeneity in hailstorm responses. Observations and modelling lead to the general expectation that hailstorm frequency will increase in Australia and Europe, but decrease in East Asia and North America, while hail severity will increase in most regions. However, these projected changes show marked spatial and temporal variability. Owing to a dearth of long-term observations, as well as incomplete process understanding and limited convection-permitting modelling studies, current and future climate change effects on hailstorms remain highly uncertain. Future studies should focus on detailed processes and account for non-stationarities in proxy relationships.  more » « less
Award ID(s):
1661657
NSF-PAR ID:
10282440
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature reviews
Volume:
https://doi.org/10.1038/s43017-020-00133-9
ISSN:
1889-3856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Severe convective storms (SCS) and their associated hazards present significant societal risk. Understanding of how these hazards, such as hailfall, may change due to anthropogenic climate change is in its infancy. Previous methods used to investigate possible changes in SCS and their hail used climate model output and were limited by their coarse spatiotemporal resolution and less detailed representations of hail. This study instead uses an event-level pseudo–global warming (PGW) approach to simulate seven different hailstorms in their historical environments, and again in five different end-of-century PGW environments obtained from the worst-case scenario increases in CO2of five different CMIP5 members. Changes in large-scale environmental parameters were generally found to be consistent with prior studies, showing mostly increases in CAPE, CIN, and precipitable water, with minor changes in vertical wind shear. Nearly all simulated events had moderately stronger updrafts in the PGW environments. Only cold-season events showed an increase in hail sizes both within the storms and at the surface, whereas warm-season events exhibited a decrease in hail sizes at the surface and aloft. Changes in the event-total hailfall area at the ground also showed a seasonal trend, with increases in cold-season events and decreases in warm-season events. Melting depths increased for all PGW environments, and these increases likely contributed to greater rainfall area for warm-season events, where an increase in smaller hail aloft would be more prone to melting. The differences in PGW simulation hail sizes in cold-season and warm-season events found here are likely related to differences in microphysical processes and warrant future study.

    Significance Statement

    It is uncertain how severe thunderstorm hazards (such as hail, tornadoes, and damaging winds) may change due to human-induced climate change. Given the significant societal risk these hazards pose, this study seeks to better understand how hailstorms may change in the future. Simulated end-of-century storms in winter months showed larger hail sizes and a larger area of event-total hailfall than in the historical simulations, whereas simulated future storms in spring and summer months showed smaller hail sizes and a reduction in the area where hail fell. An analysis of traditional environmental and storm-scale properties did not reveal a clear distinction between cold-season and warm-season hailstorms, suggesting that changes in small-scale precipitation processes may be responsible.

     
    more » « less
  2. Abstract Severe convective storms along the Front Range and eastern plains of Colorado frequently produce tornadoes and hail, leading to substantial damage and crop losses annually. Determination of future human exposure from these events must consider both changes in meteorological conditions and population dynamics. Projections of EF0 + tornadoes (on the enhanced Fujita scale) and severe [1.0+ in. (25.4+ mm)] hail reports out to the year 2100 are computed using convective parameter proxies generated from dynamically downscaled GFDL Climate Model, version 3 (GFDL CM3), output by the WRF Model for control and future climate scenarios. The proxies suggest that tornado and hail days in the region may increase by up to one tornado day and three hail days per year by 2100, with the greatest increases across northeastern Colorado. Using a spatially explicit Monte Carlo model, projected future frequency and spatial changes in tornadoes and hail are superimposed with population projections from the shared socioeconomic pathways (SSPs) to provide a range of possible scenarios for end-of-century human exposure to tornadoes and hailstorms. Changes in hazard frequency and spatial distribution may amplify human exposure up to 117% for tornadoes and 178% for hail in the region by 2100, although specific results are sensitive to uncertain combinations of future overlaps between hazard spatial distribution and population. Findings presented herein not only will provide the public, insurers, policy makers, land-use planners, and researchers with estimates of potential future tornado and hail impacts in the Front Range region, they also will allow the weather enterprise to better understand, prepare for, and communicate tornado and hail risk to eastern Colorado communities. 
    more » « less
  3. Abstract

    About 70% of the world's main crops depend on insect pollination. Climate change is already affecting the abundance and distribution of insects, which could cause geographical mismatches between crops and their pollinators. Crops that rely primarily on wild pollinators (e.g., crops that cannot be effectively pollinated by commercial colonies of honey bees) could be particularly in jeopardy. However, limited information on plant–pollinator associations and pollinator distributions complicate the assessment of climate change impacts on specific crops. To study the potential impacts of climate change on pollination of a specific crop in North America, we use the case of open‐field tomato crops, which rely on buzz pollinators (species that use vibration to release pollen, such as bumble bees) to increase their production. We aimed to (1) assess potential changes in buzz pollinator distribution and richness, and (2) evaluate the overlap between areas with high densities of tomato crops and high potential decrease in richness. We used baseline (1961–1990) climate and future (2050s and 2080s) climatic projections in ecological niche models fitted with occurrences of wild bees, documented in the literature as pollinators of tomatoes, to estimate the baseline and future potential distribution of suitable climatic conditions of targeted species and to create maps of richness change across North America. We obtained reliable models for 15 species and found important potential decreases in the distribution of some pollinators (e.g.,Lasioglossum pectoraleandAugochlorella aurata). We observed geographical discrepancies in the projected change in species richness across North America, detecting important declines in the eastern United States (up to 11 species decrease for 2050s). After overlapping the maps of species richness change with a tomato crop map for the United States, we found spatial correspondence between richness declines and areas with high concentration of tomato crops. Disparities in the effects of climate change on the potential future distribution of different wild pollinators and geographical variation in richness highlight the importance of crop‐specific studies. Our study also emphasizes the challenges of compiling and modeling crop‐specific pollinator data and the need to improve our understanding of current distribution of pollinators and their community dynamics under climate change.

     
    more » « less
  4. Abstract

    Habitat connectivity is a key factor influencing species range dynamics. Rapid warming in the Arctic is leading to widespread heterogeneous shrub expansion, but impacts of these habitat changes on range dynamics for large herbivores are not well understood. We use the climate–shrub–moose system of northern Alaska as a case study to examine how shrub habitat will respond to predicted future warming, and how these changes may impact habitat connectivity and the distribution of moose (Alces alces). We used a 19 year moose location dataset, a 568 km transect of field shrub sampling, and forecasted warming scenarios with regional downscaling to map current and projected shrub habitat for moose on the North Slope of Alaska. The tall‐shrub habitat for moose exhibited a dendritic spatial configuration correlated with river corridor networks and mean July temperature. Warming scenarios predict that moose habitat will more than double by 2099. Forecasted warming is predicted to increase the spatial cohesion of the habitat network that diminishes effects of fragmentation, which improves overall habitat quality and likely expands the range of moose. These findings demonstrate how climate change may increase habitat connectivity and alter the distributions of shrub herbivores in the Arctic, including creation of novel communities and ecosystems.

     
    more » « less
  5. null (Ed.)
    Abstract. The Arctic is warming 2 to 3 times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out using the GISS-E2.1 Earth system model to study the aerosol burdens and their radiative and climate impacts over the Arctic (>60∘ N), using anthropogenic emissions from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases, while global annual mean greenhouse gas concentrations were prescribed and kept fixed in all simulations. Results showed that the simulations have underestimated observed surface aerosol levels, in particular black carbon (BC) and sulfate (SO42-), by more than 50 %, with the smallest biases calculated for the atmosphere-only simulations, where winds are nudged to reanalysis data. CMIP6 simulations performed slightly better in reproducing the observed surface aerosol concentrations and climate parameters, compared to the Eclipse simulations. In addition, simulations where atmosphere and ocean are fully coupled had slightly smaller biases in aerosol levels compared to atmosphere-only simulations without nudging. Arctic BC, organic aerosol (OA), and SO42- burdens decrease significantly in all simulations by 10 %–60 % following the reductions of 7 %–78 % in emission projections, with the Eclipse ensemble showing larger reductions in Arctic aerosol burdens compared to the CMIP6 ensemble. For the 2030–2050 period, the Eclipse ensemble simulated a radiative forcing due to aerosol–radiation interactions (RFARI) of -0.39±0.01 W m−2, which is −0.08 W m−2 larger than the 1990–2010 mean forcing (−0.32 W m−2), of which -0.24±0.01 W m−2 was attributed to the anthropogenic aerosols. The CMIP6 ensemble simulated a RFARI of −0.35 to −0.40 W m−2 for the same period, which is −0.01 to −0.06 W m−2 larger than the 1990–2010 mean forcing of −0.35 W m−2. The scenarios with little to no mitigation (worst-case scenarios) led to very small changes in the RFARI, while scenarios with medium to large emission mitigations led to increases in the negative RFARI, mainly due to the decrease in the positive BC forcing and the decrease in the negative SO42- forcing. The anthropogenic aerosols accounted for −0.24 to −0.26 W m−2 of the net RFARI in 2030–2050 period, in Eclipse and CMIP6 ensembles, respectively. Finally, all simulations showed an increase in the Arctic surface air temperatures throughout the simulation period. By 2050, surface air temperatures are projected to increase by 2.4 to 2.6 ∘C in the Eclipse ensemble and 1.9 to 2.6 ∘C in the CMIP6 ensemble, compared to the 1990–2010 mean. Overall, results show that even the scenarios with largest emission reductions leads to similar impact on the future Arctic surface air temperatures and sea-ice extent compared to scenarios with smaller emission reductions, implying reductions of greenhouse emissions are still necessary to mitigate climate change. 
    more » « less