skip to main content

Title: Teaching Earth and environmental Science using Model-Evidence Link diagrams
High-quality science education is essential for students to become scientifically literate. Model-Evidence Link (MEL) diagrams and build-a-MEL (baMEL) diagrams are instructional scaffolds that create an opportunity for students to build scientific understanding through the evaluation of the connections between evidence and alternative explanations of a scientific phenomenon. The MELs and baMELs allow for a natural incorporation of three-dimensional learning that has been recommended by the Next Generation Science Standards to enhance students’ comprehension. Through this science teaching methodology, students are able to see that by diagramming and then writing about one’s thoughts about the connections between evidence and explanations, one can deepen their understanding of scientific concepts.
Authors:
; ;
Award ID(s):
2027376
Publication Date:
NSF-PAR ID:
10282576
Journal Name:
The Earth scientist
Volume:
36
Issue:
3
Page Range or eLocation-ID:
31-35
ISSN:
1045-4772
Sponsoring Org:
National Science Foundation
More Like this
  1. High-quality science education is essential for students to become scientifically literate. Model-Evidence Link (MEL) diagrams and build-a-MEL (baMEL) diagrams are instructional scaffolds that create an opportunity for students to build scientific understanding through the evaluation of the connections between evidence and alternative explanations of a scientific phenomenon. The MELs and baMELs allow for a natural incorporation of three-dimensional learning that has been recommended by the Next Generation Science Standards to enhance students’ comprehension. Through this science teaching methodology, students are able to see that by diagramming and then writing about one’s thoughts about the connections between evidence and explanations, one can deepen their understanding of scientific concepts.
  2. Students face many challenges that are connected to the scientific enterprise, such as the increasing frequency of extreme weather events (e.g., prolonged periods of drought, record temperatures, severe precipitation episodes). Recent scientific consensus has attributed increases in such events to the current climate crisis caused by human activities. The potential relation between extreme weather and current climate change characterizes why these phenomena may be complex, and understanding both the distinctions and relations between weather and climate is essential for reasoning about such phenomena. To help students in this regard, we have designed the Extreme Weather build-a-MEL, where they evaluate the connections between lines of evidence and alternative explanations. The build-a-MEL helps increase students’ agency (i.e., to intentionally make things happen through actions). And with increased agency, students are able to construct knowledge about weather and climate through engagement in scientific practices, with alignment to the Next Generation Science Standards.
  3. It is a pleasure to present the second special issue of The Earth Scientist sponsored by the MEL Project team (https://serc.carleton.edu/mel/index.html)! The Model-Evidence Link (MEL) and MEL2 projects have been sponsored by the National Science Foundation (Grant Nos. 1316057, 1721041, and 2027376) to Temple University and the University of Maryland, in partnership with the University of North Georgia, TERC, and the Planetary Science Institute. In 2016 we shared with you the four MEL diagram activities, covering the topics of climate change, the formation of the Moon, fracking and earthquakes, and wetlands use, as well as a rubric for assessment. This issue brings to you our four new build-a-MEL activities on the origins of the Universe, fossils and Earth’s past, freshwater resources, and extreme weather. Additionally, there are articles about a new NGSS-aligned rubric and transfer task to help students apply their new skills in other situations and about teaching with MEL and build-a-MEL activities. Our goals with all of these activities are to help students learn Earth science content by engaging in scientific practices, notably the evaluation of alternative explanatory models (by looking at the connections between lines of evidence and the competing models) and argumentation. The team has testedmore »these activities in multiple middle and high school classrooms. Our research has shown the activities to be effective in learning both content and skills, and our partner teachers report that students enjoy the activities. These activities are freely available for teachers to use. We hope that you and your students will also find them to be effective and enjoyable approaches to learning about complex and sometimes controversial socioscientific issues within Earth Science.« less
  4. Socially-relevant and controversial topics, such as water issues, are subject to differences in the explanations that scientists and the public (herein, students) find plausible. Students need to be more evaluative of the validity of explanations (e.g., explanatory models) based on evidence when addressing such topics. We compared two activities where students weighed connections between lines of evidence and explanations. In one activity, students were given four evidence statements and two models (one scientific and one non-scientific alternative); in the other, students chose four out of eight evidence statements and three models (two scientific and one non-scientific). Repeated measures analysis of variance (ANOVA) showed that both activities engaged students’ evaluations and differentially shifted students’ plausibility judgments and knowledge. A structural equation model suggested that students’ evaluation may influence post-instructional plausibility and knowledge; when students chose their lines of evidence and explanatory models, their evaluations were deeper, with stronger shifts toward a scientific stance and greater levels of post-instructional knowledge. The activities may help to develop students’ critical evaluation skills, a scientific practice that is key to understanding both scientific content and science as a process. Although effect sizes were modest, the results provided critical information for the final development and testingmore »stage of these water resource instructional activities.« less
  5. The Model-Evidence-Link (MEL) and build-a MEL (baMEL) tasks are designed to engage students in scientific practices, including argumentation and critical thinking. We designed a rubric for teachers to assess the various practices and skills students use while completing a MEL or baMEL, based on several NGSS Science and Engineering Practices (SEPs) and Cross Cutting Concepts (CCCs). When applying this rubric, we suggest that teachers only focus on student performance with respect to one SEP or CCC each time they implement a MEL or baMEL. We also developed a transfer task to ascertain how well students are able to perform MEL-related thinking skills, such as identifying a scientific model and alternative (but non-scientific) models, lines of evidence, and plausibility of knowledge claims, in a grade appropriate scientific journal article. The near-transfer activity can help teachers gauge how well students apply their MEL/baMEL skills and can improve students’ scientific literacy.