skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teaching Earth and environmental Science using Model-Evidence Link diagrams
High-quality science education is essential for students to become scientifically literate. Model-Evidence Link (MEL) diagrams and build-a-MEL (baMEL) diagrams are instructional scaffolds that create an opportunity for students to build scientific understanding through the evaluation of the connections between evidence and alternative explanations of a scientific phenomenon. The MELs and baMELs allow for a natural incorporation of three-dimensional learning that has been recommended by the Next Generation Science Standards to enhance students’ comprehension. Through this science teaching methodology, students are able to see that by diagramming and then writing about one’s thoughts about the connections between evidence and explanations, one can deepen their understanding of scientific concepts.  more » « less
Award ID(s):
2027376
PAR ID:
10282576
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Earth scientist
Volume:
36
Issue:
3
ISSN:
1045-4772
Page Range / eLocation ID:
31-35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-quality science education is essential for students to become scientifically literate. Model-Evidence Link (MEL) diagrams and build-a-MEL (baMEL) diagrams are instructional scaffolds that create an opportunity for students to build scientific understanding through the evaluation of the connections between evidence and alternative explanations of a scientific phenomenon. The MELs and baMELs allow for a natural incorporation of three-dimensional learning that has been recommended by the Next Generation Science Standards to enhance students’ comprehension. Through this science teaching methodology, students are able to see that by diagramming and then writing about one’s thoughts about the connections between evidence and explanations, one can deepen their understanding of scientific concepts. 
    more » « less
  2. Critical thinking skills are best taught as students participate in the scientific practice of argumentation. When engaged in scientific argumentation, students are expected to engage in active listening and social collaboration through the process of negotiation and consensus building. Socioscientific issues are ideally suited for such activities. Model-Evidence-Link (MEL) diagrams provide an ideal scaffold for helping students learn to build arguments that can help them make connections between evidence and scientific explanations. In these activities students compare competing models by making plausibility judgements, then comparing how well scientific evidence supports each model. In research-based activities, these scaffolds have been shown to help students better understand scientific concepts, to shift students’ plausibility judgments, and to provide insights into how students negotiate consensus through argumentation. In this article we share both the resources and instructional methods for including MEL diagrams in the middle school classroom. 
    more » « less
  3. null (Ed.)
    Students face many challenges that are connected to the scientific enterprise, such as the increasing frequency of extreme weather events (e.g., prolonged periods of drought, record temperatures, severe precipitation episodes). Recent scientific consensus has attributed increases in such events to the current climate crisis caused by human activities. The potential relation between extreme weather and current climate change characterizes why these phenomena may be complex, and understanding both the distinctions and relations between weather and climate is essential for reasoning about such phenomena. To help students in this regard, we have designed the Extreme Weather build-a-MEL, where they evaluate the connections between lines of evidence and alternative explanations. The build-a-MEL helps increase students’ agency (i.e., to intentionally make things happen through actions). And with increased agency, students are able to construct knowledge about weather and climate through engagement in scientific practices, with alignment to the Next Generation Science Standards. 
    more » « less
  4. Students often encounter alternative explanations about astronomical phenomena. However, inconsistent with astronomers’ practices, students may not be scientific, critical, and evaluative when comparing alternatives. Instructional scaffolds, such as the Model-Evidence Link (MEL) diagram, where students weigh connections between lines of evidence and alternative explanations, may help facilitate students’ scientific evaluation and deepen their learning about astronomy. Our research team has developed two forms of the MEL: (a) the preconstructed MEL (pcMEL), where students are given four lines of evidence and two alternative explanatory models about the formation of Earth’s Moon and (b) the build-a-MEL (baMEL), where students construct their own diagrams by choosing four lines scientific evidence out of eight choices and two alternative explanatory model out of three choices, about the origins of the Universe. The present study compared the more autonomy-supportive baMEL to the less autonomy-supportive pcMEL and found that both scaffolds shifted high school student and preservice teacher participants’ plausibility judgments toward a more scientific stance and increased their knowledge about the topics. Additional analyses revealed that the baMEL resulted in deeper evaluations and had stronger relations between levels of evaluation and post-instructional plausibility judgements and knowledge compared to the pcMEL. This present study, focused on astronomical topics, supports our team’s earlier research that scaffolds such as the MELs in combination with more autonomy-supportive classrooms may be one way to deepen students’ scientific thinking and increase their knowledge of complex scientific phenomena. 
    more » « less
  5. null (Ed.)
    It is a pleasure to present the second special issue of The Earth Scientist sponsored by the MEL Project team (https://serc.carleton.edu/mel/index.html)! The Model-Evidence Link (MEL) and MEL2 projects have been sponsored by the National Science Foundation (Grant Nos. 1316057, 1721041, and 2027376) to Temple University and the University of Maryland, in partnership with the University of North Georgia, TERC, and the Planetary Science Institute. In 2016 we shared with you the four MEL diagram activities, covering the topics of climate change, the formation of the Moon, fracking and earthquakes, and wetlands use, as well as a rubric for assessment. This issue brings to you our four new build-a-MEL activities on the origins of the Universe, fossils and Earth’s past, freshwater resources, and extreme weather. Additionally, there are articles about a new NGSS-aligned rubric and transfer task to help students apply their new skills in other situations and about teaching with MEL and build-a-MEL activities. Our goals with all of these activities are to help students learn Earth science content by engaging in scientific practices, notably the evaluation of alternative explanatory models (by looking at the connections between lines of evidence and the competing models) and argumentation. The team has tested these activities in multiple middle and high school classrooms. Our research has shown the activities to be effective in learning both content and skills, and our partner teachers report that students enjoy the activities. These activities are freely available for teachers to use. We hope that you and your students will also find them to be effective and enjoyable approaches to learning about complex and sometimes controversial socioscientific issues within Earth Science. 
    more » « less