Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via high-resolution direct numerical simulations. The simulations follow the experimental study [1], in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi- two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced. 
                        more » 
                        « less   
                    
                            
                            Liquid metal swirling flow affected by transverse magnetic field
                        
                    
    
            In this work we study numerically liquid metal flow in a square duct under the influence of a transverse magnetic field applied in a spanwise direction (coplanar). The key interest of the present study is an attempt of passive control of flow regimes developed under magnetic field and thermal loads by applying specially shaped conditions, such as swirling, at the duct inlet. In this paper, we report results of numerical simulations of the interaction of swirling flow and transverse magnetic field in a square duct flow. Analysis of the obtained regimes might be important for the development of an experimental setup, in order to design corresponding inlet sections. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1803730
- PAR ID:
- 10282587
- Date Published:
- Journal Name:
- Magnetohydrodynamics
- Volume:
- 56
- Issue:
- 2-3
- ISSN:
- 0024-998X
- Page Range / eLocation ID:
- 121 to 130
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via direct numerical simulations. The simulations follow the revealing experimental study of Sukoriansky et al. ( Exp. Fluids , vol. 4 (1), 1986, pp. 11–16), in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi-two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. Statistical turbulence properties, such as the energy decay curves, two-point correlations and typical length scales are computed. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.more » « less
- 
            Direct numerical simulations and linear stability analysis are carried out to study mixed convection in a horizontal duct with constant-rate heating applied at the bottom and an imposed transverse horizontal magnetic field. A two-dimensional approximation corresponding to the asymptotic limit of a very strong magnetic field effect is validated and applied, together with full three-dimensional analysis, to investigate the flow's behaviour in the previously unexplored range of control parameters corresponding to typical conditions of a liquid metal blanket of a nuclear fusion reactor (Hartmann numbers up to $10^4$ and Grashof numbers up to $$10^{10}$$ ). It is found that the instability to quasi-two-dimensional rolls parallel to the magnetic field discovered at smaller Hartmann and Grashof numbers in earlier studies also occurs in this parameter range. Transport of the rolls by the mean flow leads to magnetoconvective temperature fluctuations of exceptionally high amplitudes. It is also demonstrated that quasi-two-dimensional structure of flows at very high Hartmann numbers does not guarantee accuracy of the classical two-dimensional approximation. The accuracy deteriorates at the highest Grashof numbers considered in the study.more » « less
- 
            Abstract The standard magnetorotational instability (SMRI) is a promising mechanism for turbulence and rapid accretion in astrophysical disks. It is a magnetohydrodynamic (MHD) instability that destabilizes otherwise hydrodynamically stable disk flow. Due to its microscopic nature at astronomical distances and stringent requirements in laboratory experiments, SMRI has remained unconfirmed since its proposal, despite its astrophysical importance. Here we report a nonaxisymmetric MHD instability in a modified Taylor-Couette experiment. To search for SMRI, a uniform magnetic field is imposed along the rotation axis of a swirling liquid-metal flow. The instability initially grows exponentially, becoming prominent only for sufficient flow shear and moderate magnetic field. These conditions for instability are qualitatively consistent with SMRI, but at magnetic Reynolds numbers below the predictions of linear analyses with periodic axial boundaries. Three-dimensional numerical simulations, however, reproduce the observed instability, indicating that it grows linearly from the primary axisymmetric flow modified by the applied magnetic field.more » « less
- 
            null (Ed.)A numerical study is pursued to investigate the aerodynamics and thermal interactions between a spreading flame and the surrounding walls as well as their effects on fire behaviors. This is done in support of upcoming microgravity experiments aboard the International Space Station. For the numerical study, a three-dimensional transient Computational Fluid Dynamics combustion model is used to simulate concurrent-flow flame spread over a thin solid sample in a narrow flow duct. The height of the flow duct is the main parameter. The numerical results predict a quenching height for the flow duct below which the flame fails to spread. For duct heights sufficiently larger than the quenching height, the flame reaches a steady spreading state before the sample is fully consumed. The flame spread rate and the pyrolysis length at steady state first increase and then decrease when the flow duct height decreases. The detailed gas and solid profiles show that flow confinement has competing effects on the flame spread process. On one hand, it accelerates flow during thermal expansion from combustion, intensifying the flame. On the other hand, increasing flow confinement reduces the oxygen supply to the flame and increases conductive heat loss to the walls, both of which weaken the flame. These competing effects result in the aforementioned non-monotonic trend of flame spread rate as duct height varies. This work relates to upcoming microgravity experiments, in which flat thin samples will be burned in a low-speed concurrent flow using a small flow duct aboard the International Space Station. Two baffles will be installed parallel to the fuel sample (one on each side of the sample) to create an effective reduction in the height of the flow duct. The concept and setup of the experiments are presented in this work.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    