skip to main content

Title: Liquid metal swirling flow affected by transverse magnetic field
In this work we study numerically liquid metal flow in a square duct under the influence of a transverse magnetic field applied in a spanwise direction (coplanar). The key interest of the present study is an attempt of passive control of flow regimes developed under magnetic field and thermal loads by applying specially shaped conditions, such as swirling, at the duct inlet. In this paper, we report results of numerical simulations of the interaction of swirling flow and transverse magnetic field in a square duct flow. Analysis of the obtained regimes might be important for the development of an experimental setup, in order to design corresponding inlet sections.
Authors:
; ; ; ;
Award ID(s):
1803730
Publication Date:
NSF-PAR ID:
10282587
Journal Name:
Magnetohydrodynamics
Volume:
56
Issue:
2-3
Page Range or eLocation-ID:
121 to 130
ISSN:
0024-998X
Sponsoring Org:
National Science Foundation
More Like this
  1. Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via direct numerical simulations. The simulations follow the revealing experimental study of Sukoriansky et al.  ( Exp. Fluids , vol. 4 (1), 1986, pp. 11–16), in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi-two-dimensional structures forming in the flow at the initial stages of themore »decay and surviving the magnetic suppression. Statistical turbulence properties, such as the energy decay curves, two-point correlations and typical length scales are computed. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.« less
  2. Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via high-resolution direct numerical simulations. The simulations follow the experimental study [1], in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi- two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. The study demonstrates thatmore »turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.« less
  3. Particle ingestion into turbine engines is a widespread problem that can cause significant degradation in engine service life. One primary damage mechanism is deposition of particulate matter in internal cooling passages. Musgrove et al. proposed a compact particle separator that could be installed between the combustor bypass exit and turbine vane cooling passage inlet. The design had small pressure losses but provided limited particle separation, and its performance has proved difficult to replicate in subsequent experiments. Borup et al recently developed a Magnetic Resonance Imaging (MRI) based technique for making full-field, 3D measurements of the mean particle concentration distribution inmore »complex flows. A particle separator based on the Musgrove et all design was fabricated out of plastic using 3D printing. The primary difference from earlier designs was the addition of a drain from the collector, through which 3% of the total flow was extracted. The separator efficiency was measured at two Reynolds numbers, using water as the working fluid and 33 micron titanium microspheres to represent dust particles. Particle Stokes number was shown to play the dominant role in determining efficiency across studies. MRI was used to obtain the 3D volume fraction and 3-component velocity fields. The velocity data showed that flow was poorly distributed between the separator louvers, while the collector flow followed the optimal pattern for particle retention. The particle distribution data revealed that strong swirling flow in the collector centrifuged particles toward the outer wall of the collector and intro a partitioned region of quiescent flow, where they proceeded to exit the collector.« less
  4. Precessing vortex cores (PVC), arising from a global instability in swirling flows, can dramatically alter the dynamics of swirl-stabilized flames. Previous study of these instabilities has identified their frequencies and potential for interaction with the shear layer instabilities also present in swirling flows. In this work, we investigate the dynamics of precessing vortex cores at a range of swirl numbers and the impact that turbulence, which tends to increase with swirl number due to the increase in mean shear, has on the dynamics of this instability. This is particularly interesting as stability predictions have previously incorporated turbulence effects using anmore »eddy viscosity model, which only captures the impact of turbulence on the base flow, not on the instantaneous dynamics of the PVC itself. Time-resolved experimental measurements of the three-component velocity field at ten swirl numbers show that at lower swirl numbers, the PVC is affected by turbulence through the presence of vortex jitter. With increasing swirl number, the PVC jitter decreases as the PVC strength increases. There is a critical swirl number below which jitter of the PVC vortex monotonically increases with increasing swirl number, and beyond which the jitter decreases, indicating that the strength of the PVC dominates over turbulent fluctuations at higher swirl numbers, despite the fact that the turbulence intensities continue to rise with increasing swirl number. Further, we use a nonlinear van der Pol oscillator model to explain the competition between the random turbulent fluctuations and coherent oscillations of the PVC. The results of this work indicate that while both the strength of the PVC and magnitude of turbulence intensity increase with increasing swirl number, there are defined regimes where each of them hold a stronger influence on the large-scale, coherent dynamics of the flow field.« less
  5. We study the emergence of precessing vortex core (PVC) oscillations in a swirling jet experiment. We vary the swirl intensity while keeping the net mass flow rate fixed using a radial-entry swirler with movable blades upstream of the jet exit. The swirl intensity is quantified in terms of a swirl number $S$ . Time-resolved velocity measurements in a radial–axial plane anchored at the jet exit for various $S$ values are obtained using stereoscopic particle image velocimetry. Spectral proper orthogonal decomposition and spatial cross-spectral analysis reveal the simultaneous emergence of a bubble-type vortex breakdown and a strong helical limit-cycle oscillation inmore »the flow for $S>S_{c}$ where $S_{c}=0.61$ . The oscillation frequency, $f_{PVC}$ , and the square of the flow oscillation amplitudes vary linearly with $S-S_{c}$ . A solution for the coherent unsteady field accurate up to $O(\unicode[STIX]{x1D716}^{3})$ ( $\unicode[STIX]{x1D716}\sim O((S-S_{c})^{1/2})$ ) is determined from the nonlinear Navier–Stokes equations, using the method of multiple scales. We show that onset of bubble type vortex breakdown at $S_{c}$ , results in a marginally stable, helical linear global hydrodynamic mode. This results in the stable limit-cycle precession of the breakdown bubble. The variation of $f_{LC}$ with $S-S_{c}$ is determined from the Stuart–Landau equation associated with the PVC. Reasonable agreement with the corresponding experimental result is observed, despite the highly turbulent nature of the flow in the present experiment. Further, amplitude saturation results from the time-averaged distortion imposed on the flow by the PVC, suggesting that linear stability analysis may predict PVC characteristics for $S>S_{c}$ .« less