skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ionized gas in the NGC 5253 supernebula: high spatial and spectral resolution observations with the JVLA and TEXES
ABSTRACT The youngest, closest, and most compact embedded massive star cluster known excites the supernebula in the nearby dwarf galaxy NGC 5253. It is a crucial target and test case for studying the birth and evolution of the most massive star clusters. We present observations of the ionized gas in this source with high spatial and spectral resolution. The data include continuum images of free–free emission with ≈0.15 arcsec resolution made with the Karl G. Jansky Very Large Array (JVLA) at 15, 22, and 33 GHz, and a full data cube of the [S iv] 10.5 μm  fine-structure emission line with ≈4.5 km s−1 velocity resolution and 0.3 arcsec beam, obtained with the Texas Echelon Cross Echelle Spectrograph (TEXES) on Gemini North. We find that (1) the ionized gas extends out from the cluster in arms or jets, and (2) the ionized gas comprises two components offset both spatially and in velocity. We discuss mechanisms that may have created the observed velocity field; possibilities include large-scale jets or a subcluster falling on to the main source.  more » « less
Award ID(s):
2006433
PAR ID:
10282645
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
497
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1675 to 1683
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Atacama Large Millimeter/submillimeter Array observations with a 800 au resolution and radiative-transfer modeling of the inner part (r≈ 6000 au) of the ionized accretion flow around a compact star cluster in formation at the center of the luminous ultracompact Hiiregion G10.6-0.4. We modeled the flow with an ionized Keplerian disk with and without radial motions in its outer part, or with an external Ulrich envelope. The Markov Chain Monte Carlo fits to the data give total stellar massesMfrom 120 to 200M, with much smaller ionized-gas massesMion-gas= 0.2–0.25M. The stellar mass is distributed within the gravitational radiusRg≈ 1000 to 1500 au, where the ionized gas is bound. The viewing inclination angle from the face-on orientation isi= 49°–56°. Radial motions at radiir>Rgconverge tovr,0≈ 8.7 km s−1, or about the speed of sound of ionized gas, indicating that this gas is marginally unbound at most. From additional constraints on the ionizing-photon rate and far-IR luminosity of the region, we conclude that the stellar cluster consists of a few massive stars withMstar= 32–60M, or one star in this range of masses accompanied by a population of lower-mass stars. Any active accretion of ionized gas onto the massive (proto)stars is residual. The inferred cluster density is very large, comparable to that reported at similar scales in the Galactic center. Stellar interactions are likely to occur within the next million years. 
    more » « less
  2. Abstract The properties of young massive clusters (YMCs) are key to understanding the star formation mechanism in starburst systems, especially mergers. We present Atacama Large Millimeter/submillimeter Array high-resolution (∼10 pc) continuum (100 and 345 GHz) data of YMCs in the overlap region of the Antennae galaxy. We identify six sources in the overlap region, including two sources that lie in the same giant molecular cloud (GMC). These YMCs correspond well with radio sources in lower-resolution continuum (100 and 220 GHz) images at GMC scales (∼60 pc). We find most of these YMCs are bound clusters through virial analysis. We estimate their ages to be ∼1 Myr and that they are either embedded or just beginning to emerge from their parent cloud. We also compare each radio source with a Pa β source, and find they have consistent total ionizing photon numbers, which indicates they are tracing the same physical source. By comparing the free–free emission at ∼10 pc scale and ∼60 pc scale, we find that ∼50% of the free–free emission in GMCs actually comes from these YMCs. This indicates that roughly half of the stars in massive GMCs are formed in bound clusters. We further explore the mass correlation between YMCs and GMCs in the Antennae and find it generally agrees with the predictions of the star cluster simulations. The most massive YMC has a stellar mass that is 1%–5% of its host GMC mass. 
    more » « less
  3. Abstract We present the first interferometric imaging of molecular line emission from the Ring Nebula, NGC 6720, in the form of Submillimeter Array (SMA) observations of COJ = 2 → 1 emission. The SMA12CO(2–1) mapping data, with ∼3″ spatial resolution and 2 km s−1velocity resolution, provide an unprecedentedly detailed, 3D view of the Ring’s clumpy molecular envelope. The emission morphology displayed in the velocity-integrated SMA12CO(2–1) image closely resembles the morphologies of near-IR H2and polycyclic aromatic hydrocarbon emission as revealed in recent JWST/NIRCam imaging of NGC 6720. The SMA12CO(2–1) data demonstrate that the molecular gas is found within a geometrically thin layer that immediately surrounds the ionized gas imaged by Hubble Space Telescope and JWST. A simple, geometric model of the12CO(2–1) emission data shows that the intrinsic structure of NGC 6720’s molecular envelope closely resembles a truncated, triaxial ellipsoid that is viewed close to pole-on, and that the dynamical age of the molecular envelope is ∼6000 yr. The SMA12CO(2–1) mapping data furthermore reveal that some of the faint, filamentary features seen projected in the Ring’s interior in JWST imaging are in fact fast-moving polar knots or bullets with radial velocities of ±45–50 km s−1relative to the systemic velocity, and that the hot progenitor star remnant is positioned at the precise geometric center of the clumpy, ellipsoidal molecular shell. We assert that the Ring’s molecular envelope represents the “fossil” remnant of a relatively sudden mass ejection ∼6000 yr ago that terminated the progenitor star’s asymptotic giant branch (AGB) evolution, and that this ellipsoidal envelope of AGB ejecta was then punctured by fast, collimated polar outflows or jets resulting from interactions between the progenitor and one or more companion stars. Such an evolutionary scenario may describe most if not all molecule-rich, “Ring-like” planetary nebulae. 
    more » « less
  4. null (Ed.)
    ABSTRACT We observed the Brackett α emission line (4.05 μm) within the nuclear starburst of NGC 253 to measure the kinematics of ionized gas, and distinguish motions driven by star formation feedback from gravitational motions induced by the central mass structure. Using NIRSPEC on Keck II, we obtained 30 spectra through a $$0^{\prime \prime }_{.}5$$ slit stepped across the central ∼5 arcsec × 25 arcsec (85 × 425 pc) region to produce a spectral cube. The Br α emission resolves into four nuclear sources: S1 at the infrared core (IRC), N1 at the radio core, and the fainter sources N2 and N3 in the northeast. The line profile is characterized by a primary component with Δvprimary ∼90–130 $$\rm km\, s^{-1}$$ (full width at half-maximum) on top of a broad blue 2wing with Δvbroad ∼300–350 $$\rm km\, s^{-1}$$, and an additional redshifted narrow component in the west. The velocity field generated from our cube reveals several distinct patterns. A mean NE–SW velocity gradient of +10 $$\rm km\, s^{-1}$$ arcsec−1 along the major axis traces the solid-body rotation curve of the nuclear disc. At the radio core, isovelocity contours become S-shaped, indicating the presence of secondary nuclear bar of total extent ∼5 arcsec (90 pc). The symmetry of the bar places the galactic centre, and potential supermassive black hole, near the radio peak rather than the IRC. A third kinematic substructure is formed by blueshifted gas near the IRC. This feature likely traces a ∼100–250 $$\rm km\, s^{-1}$$ starburst-driven outflow, potentially linking the IRC to the galactic wind observed on kpc scales. 
    more » « less
  5. null (Ed.)
    ABSTRACT We report Keck–NIRSPEC observations of the Brackett α 4.05 μm recombination line across the two candidate embedded super star clusters (SSCs) in NGC 1569. These SSCs power a bright H ii region and have been previously detected as radio and mid-infrared sources. Supplemented with high-resolution VLA mapping of the radio continuum along with IRTF–TEXES spectroscopy of the [S iv] 10.5 μm line, the Brackett α data provide new insight into the dynamical state of gas ionized by these forming massive clusters. Near-infrared sources detected in 2 μm images from the slit-viewing Camera are matched with Gaia sources to obtain accurate celestial coordinates and slit positions to within ∼0$${_{.}^{\prime\prime}}$$1. Br α is detected as a strong emission peak powered by the less luminous infrared source, MIR1 (LIR ∼ 2 × 107 $$\rm L_\odot$$). The second candidate SSC MIR2 is more luminous (LIR ≳ 4 × 108 $$\rm L_\odot$$) but exhibits weak radio continuum and Br α emission, suggesting the ionized gas is extremely dense (ne ≳ 105 cm−3), corresponding to hypercompact H ii regions around newborn massive stars. The Br α and [S iv] lines across the region are both remarkably symmetric and extremely narrow, with observed line widths Δv ≃ 40 $$\rm km\, s^{-1}$$, full width at half-maximum. This result is the first clear evidence that feedback from NGC 1569’s youngest giant clusters is currently incapable of rapid gas dispersal, consistent with the emerging theoretical paradigm in the formation of giant star clusters. 
    more » « less