skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Privacy Preserving Deep Learning Algorithms for Medical Data
Deep learning holds a great promise of revolutionizing healthcare and medicine. Unfortunately, various inference attack models demonstrated that deep learning puts sensitive patient information at risk. The high capacity of deep neural networks is the main reason behind the privacy loss. In particular, patient information in the training data can be unintentionally memorized by a deep network. Adversarial parties can extract that information given the ability to access or query the network. In this paper, we propose a novel privacy-preserving mechanism for training deep neural networks. Our approach adds decaying Gaussian noise to the gradients at every training iteration. This is in contrast to the mainstream approach adopted by Google's TensorFlow Privacy, which employs the same noise scale in each step of the whole training process. Compared to existing methods, our proposed approach provides an explicit closed-form mathematical expression to approximately estimate the privacy loss. It is easy to compute and can be useful when the users would like to decide proper training time, noise scale, and sampling ratio during the planning phase. We provide extensive experimental results using one real-world medical dataset (chest radiographs from the CheXpert dataset) to validate the effectiveness of the proposed approach. The proposed differential privacy based deep learning model achieves significantly higher classification accuracy over the existing methods with the same privacy budget.  more » « less
Award ID(s):
1910973
PAR ID:
10282864
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Winter Conference on Applications of Computer Vision
ISSN:
2472-6796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a novel Heterogeneous Gaussian Mechanism (HGM) to preserve differential privacy in deep neural networks, with provable robustness against adversarial examples. We first relax the constraint of the privacy budget in the traditional Gaussian Mechanism from (0, 1] to (0, infty), with a new bound of the noise scale to preserve differential privacy. The noise in our mechanism can be arbitrarily redistributed, offering a distinctive ability to address the trade-off between model utility and privacy loss. To derive provable robustness, our HGM is applied to inject Gaussian noise into the first hidden layer. Then, a tighter robustness bound is proposed. Theoretical analysis and thorough evaluations show that our mechanism notably improves the robustness of differentially private deep neural networks, compared with baseline approaches, under a variety of model attacks. 
    more » « less
  2. Artificial intelligence (AI) techniques have displayed impressive success in many practical fields. Deep neural networks (DNNs) owe their success to the availability of massive labeled data. However, in many real-world problems, even when a large dataset is available, deep learning methods have shown less success, due to causes such as lack of large labeled dataset, presence of noise in data, or missing data. In the present work, we intend to examine the application of deep learning methods on radar data gathered from polar regions. Our goal is to track internal ice layers in radar imagery. In such data, the presence of noise is one of the main obstacles in utilizing popular deep learning methods such as transfer learning. Our experiments show that if the neural network is trained to detect contours of objects in electro-optical imagery, it can only track a low percentage of contours in radar data. Fine-tuning and further training do not provide any better results. However, we will show that selecting the right model and training the model on the radar imagery from the base, is going to yield far better results. We also discuss another possible learning approach that can save us time for data annotation. 
    more » « less
  3. PurposeTo develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. TheoryRobust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels. MethodsThe training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. ResultsPhantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates. ConclusionThe RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols. 
    more » « less
  4. null (Ed.)
    Text classification is a fundamental problem, and recently, deep neural networks (DNN) have shown promising results in many natural language tasks. However, their human-level performance relies on high-quality annotations, which are time-consuming and expensive to collect. As we move towards large inexpensive datasets, the inherent label noise degrades the generalization of DNN. While most machine learning literature focuses on building complex networks to handle noise, in this work, we evaluate model-agnostic methods to handle inherent noise in large scale text classification that can be easily incorporated into existing machine learning workflows with minimal interruption. Specifically, we conduct a point-by-point comparative study between several noise-robust methods on three datasets encompassing three popular classification models. To our knowledge, this is the first time such a comprehensive study in text classification encircling popular models and model-agnostic loss methods has been conducted. In this study, we describe our learning and demonstrate the application of our approach, which outperformed baselines by up to 10% in classification accuracy while requiring no network modifications. 
    more » « less
  5. In this paper, we propose a novel Heterogeneous Gaussian Mechanism (HGM) to preserve differential privacy in deep neural networks, with provable robustness against adversarial examples. We first relax the constraint of the privacy budget in the traditional Gaussian Mechanism from (0, 1] to (0, infty), with a new bound of the noise scale to preserve differential privacy. The noise in our mechanism can be arbitrarily redistributed, offering a distinctive ability to address the trade-off between model utility and privacy loss. To derive provable robustness, our HGM is applied to inject Gaussian noise into the first hidden layer. Then, a tighter robustness bound is proposed. Theoretical analysis and thorough evaluations show that our mechanism notably improves the robustness of differentially private deep neural networks, compared with baseline approaches, under a variety of model attacks. 
    more » « less