skip to main content


Title: Evolutionary and Biomechanical Basis of Drumming Behavior in Woodpeckers
Understanding how and why behavioral traits diversify during the course of evolution is a longstanding goal of organismal biologists. Historically, this topic is examined from an ecological perspective, where behavioral evolution is thought to occur in response to selection pressures that arise through different social and environmental factors. Yet organismal physiology and biomechanics also play a role in this process by defining the types of behavioral traits that are more or less likely to arise. Our paper explores the interplay between ecological, physiological, and mechanical factors that shape the evolution of an elaborate display in woodpeckers called the drum. Individuals produce this behavior by rapidly hammering their bill on trees in their habitat, and it serves as an aggressive signal during territorial encounters. We describe how different components of the display—namely, speed (bill strikes/beats sec –1 ), length (total number of beats), and rhythm—differentially evolve likely in response to sexual selection by male-male competition, whereas other components of the display appear more evolutionarily static, possibly due to morphological or physiological constraints. We synthesize research related to principles of avian muscle physiology and ecology to guide inferences about the biomechanical basis of woodpecker drumming. Our aim is to introduce the woodpecker as an ideal study system to study the physiological basis of behavioral evolution and how it relates to selection born through different ecological factors.  more » « less
Award ID(s):
1947472 1952542 1832795
NSF-PAR ID:
10282915
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Charles Darwin’s  Descent of Man, and Selection in Relation to Sex  tackled the two main controversies arising from the Origin of Species:  the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE 
    more » « less
  2. Abstract

    Organisms adapted to physiochemical stressors provide ideal systems to study evolutionary mechanisms that drive adaptation and speciation. This review study focuses on livebearing fishes of thePoecilia mexicanaspecies complex (Poeciliidae), members of which have repeatedly colonized hydrogen sulphide (H2S)‐rich springs. H2S is a potent respiratory toxicant that creates extreme environmental conditions in aquatic ecosystems. There is also a rich history of research on H2S in toxicology and biomedicine, which has facilitated the generation of a priori hypotheses about the proximate mechanisms of adaptation. Testing these hypotheses through the application of high‐throughput genomic and transcriptomic analyses has led to the identification of the physiological underpinnings mediating adaptation to H2S‐rich environments. In addition, systematic natural history studies have provided a nuanced understanding of how the presence of a physiochemical stressor interacts with other sources of selection to drive evolutionary change in a variety of organismal traits, including physiology, morphology, behaviour and life history. Adaptation to extreme environments inP. mexicanaalso coincides with ecological speciation, and evolutionarily independent lineages span almost the full range of the speciation continuum from panmixia to complete reproductive isolation. Multiple mechanisms of reproductive isolation are involved in reducing gene flow between adjacent populations that are adapted to contrasting environmental conditions. Comparative studies among evolutionarily independent lineages within theP. mexicanaspecies complex and, more recently, other members of the family Poeciliidae that have colonized H2S‐rich environments will provide insights into the factors facilitating or impeding convergent evolution, providing tangible links between micro‐evolutionary processes and macro‐evolutionary patterns.

     
    more » « less
  3. Abstract Background Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially provision some developing seeds or fruits to further alter variation in siring success. Scope In this review, we describe studies that advance our understanding of the dynamics of the pollination and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation. We then explore the interplay between pollination and post-pollination success, and how these processes respond to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollination and paternity and describe novel experimental approaches to elucidate the relative importance of pollination and post-pollination factors in determining male reproductive success. Conclusions The relative contribution of pollination and post-pollination processes to variation in male reproductive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the effects of pollination and post-pollination phases in concert will be especially valuable as they will enable researchers to more fully understand the ecological conditions influencing male reproductive success. 
    more » « less
  4. Abstract

    Male lizards often display multiple pigment‐based and structural colour signals which may reflect various quality traits (e.g. performance, parasitism), with testosterone (T) often mediating these relationships. Furthermore, environmental conditions can explain colour signal variation by affecting processes such as signal efficacy, thermoregulation and camouflage. The relationships between colour signals, male quality traits and environmental factors have often been analysed in isolation, but simultaneous analyses are rare. Thus, the response of multiple colour signals to variation in all these factors in an integrative analysis remains to be investigated.

    Here, we investigated how multiple colour signals relate to their information content, examined the role of T as a potential mediator of these relationships and how environmental factors explain colour signal variation.

    We performed an integrative study to examine the covariation between three colour signals (melanin‐based black, carotenoid‐based yellow–orange and structural UV), physiological performance, parasitism, T levels and environmental factors (microclimate, forest cover) in male common lizardsZootoca viviparafrom 13 populations.

    We found that the three colour signals conveyed information on different aspects of male condition, supporting a multiple message hypothesis. T influenced only parasitism, suggesting that T does not directly mediate the relationships between colour signals and their information content. Moreover, colour signals became more saturated in forested habitats, suggesting an adaptation to degraded light conditions, and became generally brighter in mesic conditions, in contradiction with the thermal melanism hypothesis.

    We show that distinct individual quality traits and environmental factors simultaneously explain variations of multiple colour signals with different production modes. Our study therefore highlights the complexity of colour signal evolution, involving various sets of selective pressures acting at the same time, but in different ways depending on colour production mechanism.

     
    more » « less
  5. Individual animals behave differently from each other for myriad interrelated intrinsic and extrinsic reasons, and this behavioral variation is the raw substrate for evolutionary change. Behavioral varia- tion can both enhance and constrain long-term evolution (Foster, 2013), and it provides the basic materials on which natural and sexual selection can act. A rich body of historical experimental and conceptual foundations precedes many of the topics discussed. This classic literature is vast and impor- tant, and we encourage the reader to examine it in detail (e.g., Lehrman, 1953; Lorenz, 1971; Schnei- rla, 1966; Waddington, 1959) because we discuss more recent literature. For example, the study of the mechanisms that underlie behavioral variation has a divisive history, which involves carving out the relative contributions of genes and environment to a particular phenotype. Developmental systems and reaction-norm views challenged the issue of gene or environment by arguing that the interplay between genetic substrates and environmental inputs defined adaptive phenotypes across multiple contexts (Fos- ter, 2013; Gottlieb, 1991a, 1991b; Jablonka & Lamb, 2014). Identifying the interactional relationship between components permits researchers to under- stand how behavior becomes organized (Gottlieb, 1991a, 1991b) and can reveal links between indi- vidual variation and population-level persistence, species diversification (or stasis), and community dynamics (reviewed in Dingemanse & Wolf, 2013). Similarly, the study of individual differences has a rich history situated in the areas of behavioral genet- ics, sociobiology, behavioral ecology, developmen- tal psychology, personality theory, and studies of learning and cognition. Each area has its own goals, associated techniques, and levels of explanation. The study of behavioral variation during early develop- ment, for instance, has been documented primarily by psychologists studying proximate mechanisms in laboratory animal models, whereas the study of dif- ferent adult morphs using the adaptationist perspec- tive has been dominated by behavioral ecologists examining natural populations (Foster, 1995). A more complete description of individual differences requires an integrative study of the mechanisms (e.g., developmental, physiological) that guide intra- individual flexibility and the associated adaptive fine tuning of behavioral types. It is through this integra- tion that researchers can make predictions about the response of different individual phenotypes, groups, populations, and species to novel situations (e.g., captive and urban environments). 
    more » « less