skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Poly(glycidyl ether) Structure and Ether Oxygen Placement on CO 2 Solubility
Award ID(s):
1706968
PAR ID:
10283012
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Chemical & Engineering Data
Volume:
66
Issue:
7
ISSN:
0021-9568
Page Range / eLocation ID:
2832 to 2843
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A low‐carbon future demands more affordable batteries utilizing abundant elements with sustainable end‐of‐life battery management. Despite the economic and environmental advantages of Li‐MnO2batteries, their application so far has been largely constrained to primary batteries. Here, we demonstrate that one of the major limiting factors preventing the stable cycling of Li‐MnO2batteries, Mn dissolution, can be effectively mitigated by employing a common ether electrolyte, 1 mol/L lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,3‐dioxane (DOL)/1,2‐dimethoxyethane (DME). We discover that the suppression of this dissolution enables highly reversible cycling of the MnO2cathode regardless of the synthesized phase and morphology. Moreover, we find that both the LiPF6salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges. The ether electrolyte, paired with MnO2cathodes is able to demonstrate stable cycling performance at various rates, even at elevated temperature such as 60°C. Our discovery not only represents a defining step in Li‐MnO2batteries with extended life but provides design criteria of electrolytes for vast manganese‐based cathodes in rechargeable batteries. 
    more » « less
  2. null (Ed.)
  3. While Si-containing polymers can often be deconstructed using chemical triggers such as fluoride, acids, and bases, they are resistant to cleavage by mild reagents such as biological nucleophiles, thus limiting their end-of-life options and potential environmental degradability. Here, using ring-opening metathesis polymerization, we synthesize terpolymers of (1) a “functional” monomer ( e.g. , a polyethylene glycol macromonomer or dicyclopentadiene); (2) a monomer containing an electrophilic pentafluorophenyl (PFP) substituent; and (3) a cleavable monomer based on a bifunctional silyl ether . Exposing these polymers to thiols under basic conditions triggers a cascade of nucleophilic aromatic substitution (S N Ar) at the PFP groups, which liberates fluoride ions, followed by cleavage of the backbone Si–O bonds, inducing polymer backbone deconstruction. This method is shown to be effective for deconstruction of polyethylene glycol (PEG) based graft terpolymers in organic or aqueous conditions as well as polydicyclopentadiene (pDCPD) thermosets, significantly expanding upon the versatility of bifunctional silyl ether based functional polymers. 
    more » « less