skip to main content


Title: Tree‐Ring Reconstruction of the Atmospheric Ridging Feature That Causes Flash Drought in the Central United States Since 1500
Abstract

Rapid drought intensification, or flash droughts, is often driven by anomalous atmospheric ridging and can cause severe and complex impacts on water availability and agriculture, but the full range of variability of such events in terms of intensity and frequency is unknown. New tree‐ring reconstructions of May–July mid‐tropospheric ridging and soil moisture anomalies back to 1500 CE in the central United States—a hotspot for flash drought—suggest that over the last five centuries, anomalies in these two variables combined to indicate flash‐drought conditions in ∼17% of years and exceptionally severe flash drought in ∼4% of years, similar to frequencies in recent decades. However, over one‐third of all inferred exceptional flash droughts occurred since 1900, suggesting the 20th century was highly flash‐drought prone. These results may guide future work to diagnose the roles of external, oceanic, and land‐surface forcing of warm‐season atmospheric circulation and hydroclimate over North America.

 
more » « less
Award ID(s):
1703029
NSF-PAR ID:
10374581
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
4
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Flash droughts are recently recognized subseasonal extreme climate phenomena, which develop with rapid onset and intensification and have significant socio‐environmental impacts. However, their historical trends and variability remain unclear largely due to the uncertainty associated with existing approaches. Here we comprehensively assessed trends, spatiotemporal variability, and drivers of soil moisture (SM) and evaporative demand (ED) flash droughts over the contiguous United States (CONUS) during 1981–2018 using hierarchical clustering, wavelet analysis, and bootstrapping conditional probability approaches. Results show that flash droughts occur in all regions in CONUS with Central and portions of the Eastern US showing the highest percentage of weeks in flash drought. ED flash drought trends are significantly increasing in all regions, while SM flash drought trends were relatively weaker across CONUS, with small significant increasing trends in the South and West regions and a decreasing trend in the Northeast. Rising ED flash drought trends are related to increasing temperature trends, while SM flash drought trends are strongly related to trends in weekly precipitation intensity besides weekly average precipitation and evapotranspiration. In terms of temporal variability, high severity flash droughts occurred every 2–7 years, corresponding with ENSO periods. For most CONUS regions, severe flash droughts occurred most often during La Niña and when the American Multidecadal Oscillation was in a positive phase. Pacific Decadal Oscillation negative phases and Artic Oscillation positive phases were also associated with increased flash drought occurrences in several regions. These findings may have implications for informing long‐term flash drought predictions and adaptations.

     
    more » « less
  2. Flash droughts are recently recognized subseasonal extreme climate phenomena, which develop with rapid onset and intensification and have significant socio-environmental impacts. However, their historical trends and variability remain unclear largely due to the uncertainty associated with existing approaches. Here we comprehensively assessed trends, spatiotemporal variability, and drivers of soil moisture (SM) and evaporative demand (ED) flash droughts over the contiguous United States (CONUS) during 1981–2018 using hierarchical clustering, wavelet analysis, and bootstrapping conditional probability approaches. Results show that flash droughts occur in all regions in CONUS with Central and portions of the Eastern US showing the highest percentage of weeks in flash drought. ED flash drought trends are significantly increasing in all regions, while SM flash drought trends were relatively weaker across CONUS, with small significant increasing trends in the South and West regions and a decreasing trend in the Northeast. Rising ED flash drought trends are related to increasing temperature trends, while SM flash drought trends are strongly related to trends in weekly precipitation intensity besides weekly average precipitation and evapotranspiration. In terms of temporal variability, high severity flash droughts occurred every 2–7 years, corresponding with ENSO periods. For most CONUS regions, severe flash droughts occurred most often during La Niña and when the American Multidecadal Oscillation was in a positive phase. Pacific Decadal Oscillation negative phases and Artic Oscillation positive phases were also associated with increased flash drought occurrences in several regions. These findings may have implications for informing long-term flash drought predictions and adaptations. 
    more » « less
  3. Abstract

    Recent severe droughts, extreme floods, and increasing differences between seasonal high and low flows on the Amazon River may represent a twenty-first-century increase in the amplitude of the hydrologic cycle over the Amazon Basin. These precipitation and streamflow changes may have arisen from natural ocean–atmospheric variability, deforestation within the drainage basin of the Amazon River, or anthropogenic climate change. Tree-ring reconstructions of wet-season precipitation extremes, substantiated with historical accounts of climate and river levels on the Amazon River and in northeast Brazil found in the Brazilian Digital Library, indicate that the recent river-level extremes on the Amazon may have been equaled or possibly exceeded during the preinstrumental nineteenth century. The “Forgotten Drought” of 1865 was the lowest wet-season rainfall total reconstructed with tree-rings in the eastern Amazon from 1790 to 2016 and appears to have been one of the lowest stream levels observed on the Amazon River during the historical era according to first-hand descriptions by Louis Agassiz, his Brazilian colleague João Martins da Silva Coutinho, and others. Heavy rains and flooding are described during most of the tree-ring-reconstructed wet extremes, including the complete inundation of “First Street” in Santarem, Brazil, in 1859 and the overtopping of the Bittencourt Bridge in Manaus, Brazil, in 1892. These extremes in the tree-ring estimates and historical observations indicate that recent high and low flow anomalies on the Amazon River may not have exceeded the natural variability of precipitation and streamflow during the nineteenth century.

    Significance Statement

    Proxy tree-ring and historical evidence for precipitation extremes during the preinstrumental nineteenth century indicate that recent floods and droughts on the Amazon River may have not yet exceeded the range of natural hydroclimatic variability.

     
    more » « less
  4. Abstract

    The prediction skill for precipitation anomalies in late spring and summer months—a significant component of extreme climate events—has remained stubbornly low for years. This paper presents a new idea that utilizes information on boreal spring land surface temperature/subsurface temperature (LST/SUBT) anomalies over the Tibetan Plateau (TP) to improve prediction of subsequent summer droughts/floods over several regions over the world, East Asia and North America in particular. The work was performed in the framework of the GEWEX/LS4P Phase I (LS4P-I) experiment, which focused on whether the TP LST/SUBT provides an additional source for subseasonal-to-seasonal (S2S) predictability. The summer 2003, when there were severe drought/flood over the southern/northern part of the Yangtze River basin, respectively, has been selected as the focus case. With the newly developed LST/SUBT initialization method, the observed surface temperature anomaly over the TP has been partially produced by the LS4P-I model ensemble mean, and 8 hotspot regions in the world were identified where June precipitation is significantly associated with anomalies of May TP land temperature. Consideration of the TP LST/SUBT effect has produced about 25–50% of observed precipitation anomalies in most hotspot regions. The multiple models have shown more consistency in the hotspot regions along the Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train. The mechanisms for the LST/SUBT effect on the 2003 drought over the southern part of the Yangtze River Basin are discussed. For comparison, the global SST effect has also been tested and 6 regions with significant SST effects were identified in the 2003 case, explaining about 25–50% of precipitation anomalies over most of these regions. This study suggests that the TP LST/SUBT effect is a first-order source of S2S precipitation predictability, and hence it is comparable to that of the SST effect. With the completion of the LS4P-I, the LS4P-II has been launched and the LS4P-II protocol is briefly presented.

     
    more » « less
  5. Abstract Recent years have seen growing appreciation that rapidly intensifying flash droughts are significant climate hazards with major economic and ecological impacts. This has motivated efforts to inventory, monitor, and forecast flash drought events. Here we consider the question of whether the term “flash drought” comprises multiple distinct classes of event, which would imply that understanding and forecasting flash droughts might require more than one framework. To do this, we first extend and evaluate a soil moisture volatility–based flash drought definition that we introduced in previous work and use it to inventory the onset dates and severity of flash droughts across the contiguous United States (CONUS) for the period 1979–2018. Using this inventory, we examine meteorological and land surface conditions associated with flash drought onset and recovery. These same meteorological and land surface conditions are then used to classify the flash droughts based on precursor conditions that may represent predictable drivers of the event. We find that distinct classes of flash drought can be diagnosed in the event inventory. Specifically, we describe three classes of flash drought: “dry and demanding” events for which antecedent evaporative demand is high and soil moisture is low, “evaporative” events with more modest antecedent evaporative demand and soil moisture anomalies, but positive antecedent evaporative anomalies, and “stealth” flash droughts, which are different from the other two classes in that precursor meteorological anomalies are modest relative to the other classes. The three classes exhibit somewhat different geographic and seasonal distributions. We conclude that soil moisture flash droughts are indeed a composite of distinct types of rapidly intensifying droughts, and that flash drought analyses and forecasts would benefit from approaches that recognize the existence of multiple phenomenological pathways. 
    more » « less