skip to main content


Title: Possible link between Earth’s rotation rate and oxygenation
Abstract

The biotic and abiotic controls on major shifts in atmospheric oxygen and the persistence of low-oxygen periods over a majority of Earth’s history remain under debate. Explanations of Earth’s stepwise pattern of oxygenation have mostly neglected the effect of changing diel illumination dynamics linked to daylength, which has increased through geological time due to Earth’s rotational deceleration caused by tidal friction. Here we used microsensor measurements and dynamic modelling of interfacial solute fluxes in cyanobacterial mats to investigate the effect of changing daylength on Precambrian benthic ecosystems. Simulated increases in daylength across Earth’s historical range boosted the diel benthic oxygen export, even when the gross photosynthetic production remained constant. This fundamental relationship between net productivity and daylength emerges from the interaction of diffusive mass transfer and diel illumination dynamics, and is amplified by metabolic regulation and microbial behaviour. We found that the resultant daylength-driven surplus organic carbon burial could have shaped the increase in atmospheric oxygen that occurred during the Great and Neoproterozoic Oxidation Events. Our suggested mechanism, which links the coinciding increases in daylength and atmospheric oxygen via enhanced net productivity, reveals a possible contribution of planetary mechanics to the evolution of Earth’s biology and geochemistry.

 
more » « less
Award ID(s):
2046958 1637066
NSF-PAR ID:
10283204
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Geoscience
Volume:
14
Issue:
8
ISSN:
1752-0894
Page Range / eLocation ID:
p. 564-570
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2) and methane (CH4). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2, and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post‐thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post‐thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2and CH4 fluxes from decomposition. Thus, the increased C‐storage expected from higher productivity was limited and the high global warming potential of CH4contributed a net positive warming effect. Although post‐thaw peatlands are currently C sinks due to high NPP offsetting high CO2release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.

     
    more » « less
  2. Abstract

    Daily in situ rates of gross production and community respiration estimated from high‐frequency diel cycles in oxygen (O2) and optically derived particulate carbon from several platforms (both ship based and via profiling floats) were made across an ecological gradient in the North Pacific spanning the high‐nutrient/low‐chlorophyll sub‐Arctic to the oligotrophic subtropical gyre. Both oxygen and carbon‐based gross primary production and respiration rates indicated a ~3× increase between subtropical and subpolar stations. We consistently found that gross production and community respiration rates were in approximate balance at all stations across the full ecological gradient, implying that community respiration is fueled by recently produced organic matter and that recycling efficiency (~90%) is similar along the gradient. We determined that phytoplankton turnover time doubles (from 2 to 4 days) between subtropical and subpolar regimes, whereas biomass increases by approximately tenfold. We found a consistent photosynthetic quotient (1.4 ± 0.2 mol O2mol C−1), respiratory quotient (1.0 ± 0.2 mol O2mol C−1), and gross to net production ratio (2.0 ± 0.3) at all stations which underscores the similarity of fundamental ecological characteristics despite the transition f rom nutrient deplete to replete conditions. That the float‐ and ship‐based estimates of in situ production and respiration generally agreed well suggests that float‐based diel O2and particulate organic carbon measurements have the potential to greatly expand our knowledge of spatial and temporal variability of productivity and respiration in the ocean.

     
    more » « less
  3. null (Ed.)
    Spatial and temporal carbonate chemistry variability on coral reefs is influenced by a combination of seawater hydrodynamics, geomorphology, and biogeochemical processes, though their relative influence varies by site. It is often assumed that the water column above most reefs is well-mixed with small to no gradients outside of the benthic boundary layer. However, few studies to date have explored the processes and properties controlling these multi-dimensional gradients. Here, we investigated the lateral, vertical, and temporal variability of seawater carbonate chemistry on a Bermudan rim reef using a combination of spatial seawater chemistry surveys and autonomous in situ sensors. Instruments were deployed at Hog Reef measuring current flow, seawater temperature, salinity, pH T , p CO 2 , dissolved oxygen (DO), and total alkalinity (TA) on the benthos, and temperature, salinity, DO, and p CO 2 at the surface. Water samples from spatial surveys were collected from surface and bottom depths at 13 stations covering ∼3 km 2 across 4 days. High frequency temporal variability in carbonate chemistry was driven by a combination of diel light and mixed semi-diurnal tidal cycles on the reef. Daytime gradients in DO between the surface and the benthos suggested significant water column production contributing to distinct diel trends in pH T , p CO 2 , and DO, but not TA. We hypothesize these differences reflect the differential effect of biogeochemical processes important in both the water column and benthos (organic carbon production/respiration) vs. processes mainly occurring on the benthos (calcium carbonate production/dissolution). Locally at Hog Reef, the relative magnitude of the diel variability of organic carbon production/respiration was 1.4–4.6 times larger than that of calcium carbonate production/dissolution, though estimates of net organic carbon production and calcification based on inshore-offshore chemical gradients revealed net heterotrophy (−118 ± 51 mmol m –2 day –1 ) and net calcification (150 ± 37 mmol CaCO 3 m –2 day –1 ). These results reflect the important roles of time and space in assessing reef biogeochemical processes. The spatial variability in carbonate chemistry parameters was larger laterally than vertically and was generally observed in conjunction with depth gradients, but varied between sampling events, depending on time of day and modifications due to current flow. 
    more » « less
  4. Abstract

    The ratio of dissolved oxygen to argon in seawater is frequently employed to estimate rates of net community production (NCP) in the oceanic mixed layer. The in situ O2/Ar‐based method accounts for many physical factors that influence oxygen concentrations, permitting isolation of the biological oxygen signal produced by the balance of photosynthesis and respiration. However, this technique traditionally relies upon several assumptions when calculating the mixed‐layer O2/Ar budget, most notably the absence of vertical fluxes of O2/Ar and the principle that the air‐sea gas exchange of biological oxygen closely approximates net productivity rates. Employing a Lagrangian study design and leveraging data outputs from a regional physical oceanographic model, we conducted in situ measurements of O2/Ar in the California Current Ecosystem in spring 2016 and summer 2017 to evaluate these assumptions within a “worst‐case” field environment. Quantifying vertical fluxes, incorporating nonsteady state changes in O2/Ar, and comparing NCP estimates evaluated over several day versus longer timescales, we find differences in NCP metrics calculated over different time intervals to be considerable, also observing significant potential effects from vertical fluxes, particularly advection. Additionally, we observe strong diel variability in O2/Ar and NCP rates at multiple stations. Our results reemphasize the importance of accounting for vertical fluxes when interpreting O2/Ar‐derived NCP data and the potentially large effect of nonsteady state conditions on NCP evaluated over shorter timescales. In addition, diel cycles in surface O2/Ar can also bias interpretation of NCP data based on local productivity and the time of day when measurements were made.

     
    more » « less
  5. Abstract

    Headwater streams draining urbanized watersheds are subject to frequent and intense storm flows. These floods can disrupt metabolic processes occurring in benthic biofilms via the removal of biomass (i.e., scouring flows, bed mobilization) or light attenuation due to turbidity. Furthermore, channel incision caused by frequent hydraulic disturbance alters the geomorphology of streams, indirectly changing the flow and light regimes experienced by benthic biofilms. We measured dissolved oxygen (DO) and modeled whole‐stream metabolism for 18 months in six urban headwater streams in the North Carolina Piedmont, U.S.A. All streams were heterotrophic and had low rates of productivity despite relatively high streamwater nutrient concentrations. Light availability at the channel surface explained more of the day to day variation in gross primary productivity within each stream than did hydrologic disturbance. Yet among streams, the explanatory power of light declined with increasing hydrologic flashiness. We found a surprisingly wide range in DO regimes, which ranged from frequent hypoxia to near constant saturation. Hypoxia was more common in streams with lower channel gradients where bedrock outcroppings and culverts create rapid slope transitions between pools. We hypothesize this geomorphic change increases the susceptibility of benthic biota to perturbation during storms and the mean water residence time during baseflow. Increased water residence times together with elevated organic matter and nutrient inputs can set up ideal conditions for hypoxia at baseflows punctuated by frequent scouring storm flows. As a result, benthic biota are caught between hydrologic and chemical extremes that constrain their productivity.

     
    more » « less