skip to main content

Title: Puhahonu: Earth’s biggest and hottest shield volcano
New bathymetric and gravity mapping, refined volume calculations and petrologic analyses show that the Hawaiian volcano P¯uh¯ahonu is the largest and hottest shield volcano on Earth. This ∼12.5-14.1 Ma volcano in the northwest Hawaiian Ridge (NWHR) is twice the size of Mauna Loa volcano (148 ±29 vs. 74.0 ×103km3), which was assumed to be not only the largest Hawaiian volcano but also the largest known shield volcano. We considered four testable mechanisms to increase magma production, including 1) thinner lithosphere, 2) slower propagation rate, 3) more fertile source, and 4) hotter mantle. The first three of these have been ruled out. The lithosphere was old (∼88 Myrs) when P¯uh¯ahonu was formed, and thus, too thick and cold to allow for greater extents of partial melting. The propagation rate was relatively fast when it erupted (87 km/Myr), so this is another unlikely reason. Source fertility was Kea-like and no more fertile than for other much smaller NWHR volcanoes. A hotter mantle remains the best mechanism to produce the large magma volumes and is consistent with the high forsteritic olivine phenocryst compositions (up to 91.8%) and the calculated high percent of melting (24%). Thus, the gargantuan size of P¯uh¯ahonu reflects its high more » melting temperature, the highest reported for any Cenozoic basalt. A solitary wave within the Hawaiian plume is the probable cause of P¯uh¯ahonu’s higher melting temperature and the resulting increased volume flux given the absence of a more fertile source for P¯uh¯ahonu basalts, as found for many basalts from the Hawaiian Islands. « less
Authors:
; ; ;
Award ID(s):
1834758
Publication Date:
NSF-PAR ID:
10283332
Journal Name:
Chemical geology
Volume:
542
Page Range or eLocation-ID:
116296
ISSN:
0168-9622
Sponsoring Org:
National Science Foundation
More Like this
  1. Oceanic island basalts are targeted for geochemical study because they provide a direct window into mantle composition and a wealth of information on the dynamics and timescales associated with Earth mixing. Previous studies mainly focused on the shield volcanic stage of oceanic islands and the more fusible, enriched mantle components that are easily distinguished in those basalts. Mantle depleted compositions are typically more difficult to resolve unless large amounts of this material participated in mantle melting (e.g., mid-ocean ridges), or unique processes allow for their compositions to be erupted undiluted, such as very small degrees of melting of a source with minimal fusible enriched components (e.g., rejuvenated basalts) or as xenoliths (e.g., abyssal peridotites). Mantle depleted components, defined here as material with low time-integrated Rb/Sr (low 87Sr/86Sr) and high time-integrated Sm/Nd and Lu/Hf ratios (high 143Nd/144Nd and 176Hf/177Hf) relative to primitive mantle, derive from a potentially very large volume reservoir (up to 80% of the mantle), and therefore need adequate characterization in order estimate the composition of the Earth and mantle-derived melts. This review focuses on mantle depleted compositions in oceanic island basalts using the Hawaiian-Emperor chain as a case study. The Hawaiian-Emperor chain is the ∼6000 km long geologicalmore »record of the deeply sourced Hawaiian mantle plume, active for>81 Myr. Hawaiian volcanism evolves through four volcanic stages as a volcano traverses the Hawaiian plume: alkalic preshield, tholeiitic shield (80–90% volcano volume), alkalic postshield (∼1%), and silica undersaturated rejuvenated (< 0.1%). We report Pb-Sr-Nd-Hf isotope compositions and trace element concentrations of three rejuvenated Northwest Hawaiian Ridge basalts and compare them to an exhaustive compiled dataset of basalts from the Hawaiian Islands to the Emperor Seamounts. The Northwest Hawaiian Ridge (NWHR) includes 51 volcanoes spanning ∼42 m.y. between the bend in the Hawaiian-Emperor chain and the Hawaiian Islands where there is no high-precision isotopic data published on the rejuvenated-stage over ∼47% of the chain. NWHR and Hawaiian Island rejuvenated basalts are geochemically similar, indicating a consistent source for rejuvenated volcanism over ∼12.5 million years. In contrast, shield-stage basalts from the oldest Emperor Seamounts are more depleted in isotopic composition (i.e., higher 176Hf/177Hf, and 143Nd/144Nd with lower 87Sr/86Sr and 208Pb*/206Pb*) and trace element concentrations (i.e., much lower concentrations of highly incompatible elements) than all other depleted Hawaiian basalts younger than the bend, including NWHR rejuvenated basalts. The strongly depleted source for the oldest Emperor Seamounts (> 70 Ma) was likely related to interaction with the Kula-Pacific-Izanagi mid-ocean ridge spreading system active near the Hawaiian plume in the Late Cretaceous. In contrast, the incompatible trace element ratios of NWHR rejuvenated basalts require a distinct source in the Hawaiian mantle plume that was imprinted by ancient (> 1 Ga) partial melting, likely ancient recycled oceanic lithosphere. This review of the geochemistry of Hawaiian depleted components documents the need for the sampling of multiple distinctive depleted compositions, each preferentially melted during specific periods of Hawaiian plume activity. This suggests that the composition of depleted components can evolve during the lifetime of the mantle plume, as observed for enriched components in the Hawaiian mantle plume. Changes in the composition of depleted components are dominantly controlled by the upper mantle tectonic configurations at the time of eruption (i.e., proximity to a mid-ocean ridge), as this effect overwhelms the signal imparted by potentially sampling different lower mantle components through time.« less
  2. Abstract

    The break-up of supercontinents is often temporally and spatially associated with large outpourings of basaltic magmas in the form of large igneous provinces (LIPs) and seaward dipping reflectors (SDRs). A widespread view is that the upwelling of hot mantle plumes drives both continental break-up and generation of associated LIPs. This is supported by petrologic estimates of the temperature from olivine-melt thermometers applied to basaltic magmas. These thermometers must be applied to a primary mantle-derived magma, requiring the selection of an appropriate primitive magma and an assumption of how much olivine is to be back-added to correct for fractional crystallization. We evaluated the effects of these assumptions on formation temperatures by compiling and analyzing a database of North Atlantic igneous province (NAIP) and Central Atlantic magmatic province (CAMP) lavas and olivines. Ni and FeOT systematics suggest that many picrite magmas have undergone olivine addition and are not true liquids, requiring careful selection of primitive magmas. The maximum amount of back-added olivine was determined by constraining mantle peridotite melt fractions for a range of possible mantle potential temperatures and continental lithosphere thicknesses. Using an empirical relationship between melting degree and forsterite (Fo) content, we show that the possible maximum olivine forsteritemore »content in equilibrium with NAIP magmas is 90.9, which is lower than the maximum olivine forsterite content observed in the NAIP olivine population. We infer primary magmas that lead to mantle potential temperatures of 1420°C for the NAIP and 1330°C for CAMP. Using a similar approach for consistency, we estimate a mantle potential temperature of 1350°C for mid-ocean ridge basalts (MORB). Our results suggest that LIPs associated with continental break-up are not significantly hotter than MORB, which suggests that continental break-up may not be driven by deep-seated thermal plumes. Instead, we suggest that such voluminous magmatism might be related to preferential melting of fertile components within the lithosphere triggered by far-field extensional stresses.

    « less
  3. Continental arcs in Cordilleran orogenic systems display episodic changes in magma production rate, alternating between flare ups (70–90 km3 km􀀀 1 Myr􀀀 1) and lulls (< 20 km3 km􀀀 1 Myr􀀀 1) on timescales of tens of millions of years. Arc segments or individual magmatic suites may have even higher rates, up several 100 s of km3 km􀀀 1 Myr􀀀 1, during flare ups. These rates are largely determined by estimating volumes of arc crust, but do not reflect melt production from the mantle. The bulk of mantle-derived magmas are recycled back into the mantle by delamination of arc roots after differentiation in the deep crust. Mantle-derived melt production rates for continental arcs are estimated to be 140–215 km3 km􀀀 1 Myr􀀀 1 during flare ups and ≤ 15 km3 km􀀀 1 Myr􀀀 1 during lulls. Melt production rates averaged over multiple magmatic cycles are consistent with independent estimates for partial melting of the mantle wedge in subduction zones, however, the rates during flare ups and lulls are both anomalously high and anomalously low, respectively. The difference in mantle-derived melt production between flare ups and lulls is larger than predicted by petrologic and numerical models that explore the range ofmore »globally observed subduction parameters (e.g., convergence rate, height of the mantle wedge). This suggests that other processes are required to increase magmatism during flare ups and suppress magmatism during lulls. There are many viable explanations, but one possibility is that crystallized melts from the asthenospheric mantle wedge are temporarily stored in the deep lithosphere during lulls and then remobilized during flare ups. Basaltic melts may stall in the mantle lithosphere in inactive parts of the arc system, like the back-arc, refertilizing the mantle lithosphere and suppressing melt delivery to the lower crust. Subsequent landward arc migration (i.e., toward the interior of the continent) may encounter such refertilized mantle lithosphere magma source regions, contributing to magmatic activity during a flare up. A review of continental arcs globally suggests that flare ups commonly coincide with landward arc migration and that this migration may start tens of millions of years before the flare up occurs. The region of magmatic activity, or arc width, can also expand significantly during a flare up. Arc migration or expansion into different mantle source regions and across lithospheric and crustal boundaries can cause temporal shifts in the radiogenic isotopic composition of magmatism. In the absence of arc migration, temporal shifts are more muted. Isotopic studies of mantle xenoliths and exposures of deep arc crust suggest that that primary, mantle-derived magmas generated during flare ups reflect substantial contributions from the subcontinental mantle lithosphere. Arc migration may be caused by a variety of mechanisms, including slab anchoring or slab folding in the mantle transition zone that could generate changes in slab dip. Episodic slab shallowing is associated with many tectonic processes in Cordilleran orogenic systems, like alternations between shortening and extension in the upper plate. Studies of arc migration may help to link irregular magmatic production in continental arcs with geodynamic models for orogenic cyclicity.« less
  4. Srivastava, R. K. (Ed.)
    Abstract The initial interaction between material rising from the African Large Low Shear Velocity Province and the African lithosphere manifests as the Eocene continental large igneous province (LIP), centered on southern Ethiopia and northern Kenya. Here we present a geographically well-distributed geochemical dataset comprising the flood basalt lavas of the Eocene continental LIP to refine the regional volcano-stratigraphy into three distinct magmatic units: (1) the highly-alkaline small-volume Akobo Basalts (49.4–46.6 Ma), representing the initial phase of flood basalt volcanism derived from the melting of lithospheric-mantle metasomes, (2) the primitive and spatially restricted Amaro Basalts (45.2–39.58 Ma) representing the early main phase of flood basalt volcanism derived from the melting of the upwelling thermochemical anomaly, and (3) the spatially extensive Gamo-Makonnen magmatic unit (38-28 Ma) representing the mature main phase of flood basalt volcanism that has undergone significant processing within the lithosphere resulting in relatively homogeneous compositions. The focused intrusion of these main phase magmas over 10 m.y. preconditioned the African lithosphere for the localization of strain during subsequent episodes of lithospheric stretching. The focusing of strain into the region occupied by this continental LIP may have contributed to the initial extension in SW Ethiopia associated with the East African Rift.more »Supplementary material at https://doi.org/10.6084/m9.figshare.c.5557626« less
  5. PhD Dissertation Abstract: The imposing andesite stratovolcano is the characteristic expression of subduction zone magmatism, posing hazards to coastal populations and bearing insight into deep Earth processes. On a map of a typical volcanic arc, one can easily distinguish the approximately linear alignment and regular spacing of these major edifices that stand out from a diffuse distribution of mafic volcanoes (e.g. the Quaternary Cascades; Hildreth, 2007). The andesitic composite volcanoes have a reputation for being complex, open systems: crystal zoning “stratigraphies,” diverse crystal cargoes including antecrysts or xenocrysts, quenched magmatic inclusions, and variations in isotopic signatures are among the many lines of evidence that these systems involve a variety of igneous processes and melt sources. To investigate the development and evolution of such transcrustal magma factories, I have conducted a detailed temporal, spatial, and geochemical characterization of a long-lived arc volcanic center in the southern Washington Cascades, the Goat Rocks volcanic complex. Results from ⁴⁰Ar/³⁹Ar and U/Pb geochronology constrain the lifespan of the Goat Rocks volcanic complex from ~3.1 Ma to ~100 ka. During this time, four major composite volcanoes were built (as well as several smaller volcanoes). From oldest to youngest, these are Tieton Peak, Bear Creek Mountain, Lakemore »Creek volcano, and Old Snowy Mountain. Four volcanic stages are defined based on the lifespans of these centers and distinct compositional changes that occur from one to the next: Tieton Peak stage (3.1-2.6 Ma), Bear Creek Mountain stage (1.6-1.1 Ma), Lake Creek stage (1.1 Ma to 456 ka), and Old Snowy Mountain stage (440 ka to 115 ka). Two lava flow remnants also have ages in the interim between Tieton Peak stage and Bear Creek Mountain stage (2.3 Ma and 2.1 Ma), and their sources are not yet identified. The ages of the Bear Creek Mountain and Lake Creek stages in fact overlap, and the gap between Lake Creek stage and Old Snowy Mountain stage is only on the order of 10⁴ years. Based on supporting compositional evidence, the Bear Creek Mountain, Lake Creek, and Old Snowy Mountain stage volcanoes are considered to be the migrating surface expressions of a continuous magmatic system that was active over at least ~1.5 million years. It remains uncertain whether the gaps between the Tieton Peak stage, scattered early Pleistocene andesites, and Bear Creek Mountain stage are due to incomplete exposure/sampling or real quiescent periods earlier in the development of the Goat Rocks volcanic complex. Throughout the construction of the andesitic complex, mafic volcanoes were active on its periphery. These include the Miriam Creek volcano (~3.6-3.1 Ma), Devils Washbasin volcano (3.0-2.7 Ma), Hogback Mountain (1.1 Ma – 891 ka), Lakeview Mountain (194 ka), and Walupt Lake volcano (65 ka). Two basalt and basaltic andesite units (Qob₁ and Qob₂, 1.4 and 1.3 Ma; Hammond, 2017) also erupted from the Goat Rocks area, likely an older incarnation of Hogback Mountain. The suite of mafic magmas erupted in this region are all calcalkaline basalt (or basaltic andesite; CAB), but two compositional groups emerge from the trace element and isotopic data. Group 1 is LILE and LREE-enriched, with higher ⁸⁷Sr/⁸⁶Sr isotopes, and includes compositions from Devils Washbasin, Lower Hogback Mountain, and Lakeview Mountain. Group 2 is less enriched in LILE and LREE and lower in ⁸⁷Sr/⁸⁶Sr, and includes the compositions of Miriam Creek, Qob1, Upper Hogback Mountain, Walupt Lake, and Coleman Weedpatch. The two groups are recurrent through time and with no geographic distinction; in fact, both types were tapped by the Hogback Mountain volcano. Together both of these groups, alongside CABs from Mount Adams and various basalts from Mount St. Helens, form a compositional array between the basalts of the High Cascades and the intraplate-type basalts (IPB) of Mount Adams and Simcoe volcanic field. These results lead to three conclusions. 1) Variably subduction-modified mantle is distributed across the region, perhaps either as stratified layers or a web-like network of fluid pathways amongst less metasomatized mantle. 2) Transitional compositions between the IPBs and typical “High Cascades” CAB/HAOT signature suggest a broader influence of the mantle domain that feeds IPBs—if asthenospheric mantle through a slab window, as suggested by Mullen et al. (2017), then perhaps it bleeds in smaller quantities over a broader area. This compositional trend solidifies the interpretation of the southern Washington Cascades as a unique and coherent “segment” of the arc (the Washington segment of Pitcher and Kent, 2019). 3) The recurrence of variable mafic magma types through time, and with no geographic boundaries, indicates that the compositional evolution of the Goat Rocks volcanic complex was not likely driven by a change in mafic input. Indeed, the Sr, Nd, Hf, and Pb isotope ratios of the intermediate to felsic suite are closely aligned with the local basalts and suggest a limited role of crustal assimilation. Importantly, several mineral thermometers (zircon, ilmenite-magnetite pairs, and amphibole) align in recording higher crystallization temperatures in Bear Creek Mountain to early Lake Creek time, a cooling trend through the Lake Creek stage, and a more diverse range of temperatures in the transition to Old Snowy Mountain stage. Thus, it is suggested that the compositional evolution at Goat Rocks represents a thermal cycle of waxing and waning magmatic flux: where the period of Bear Creek Mountain to early Lake Creek volcanism was the climactic phase of a vertically extensive magma homogenization factory, then the system waned and cooled, ultimately losing its ability to filter, homogenize, and enrich magmas.« less